# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F import time from tqdm import tqdm from models.spatracker.models.core.spatracker.spatracker import get_points_on_a_grid from models.spatracker.models.core.model_utils import smart_cat from models.spatracker.models.build_spatracker import ( build_spatracker, ) from models.spatracker.models.core.model_utils import ( meshgrid2d, bilinear_sample2d, smart_cat ) import spaces class SpaTrackerPredictor(torch.nn.Module): def __init__( self, checkpoint="cotracker/checkpoints/cotracker_stride_4_wind_8.pth", interp_shape=(384, 512), seq_length=16 ): super().__init__() self.interp_shape = interp_shape self.support_grid_size = 6 model = build_spatracker(checkpoint, seq_length=seq_length) self.model = model self.model.eval() @spaces.GPU @torch.no_grad() def forward( self, video, # (1, T, 3, H, W) video_depth = None, # (T, 1, H, W) # input prompt types: # - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame. # *backward_tracking=True* will compute tracks in both directions. # - queries. Queried points of shape (1, N, 3) in format (t, x, y) for frame index and pixel coordinates. # - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask. # You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks. queries: torch.Tensor = None, segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W) grid_size: int = 0, grid_query_frame: int = 0, # only for dense and regular grid tracks backward_tracking: bool = False, depth_predictor=None, wind_length: int = 8, progressive_tracking: bool = False, ): if queries is None and grid_size == 0: tracks, visibilities, T_Firsts = self._compute_dense_tracks( video, grid_query_frame=grid_query_frame, backward_tracking=backward_tracking, video_depth=video_depth, depth_predictor=depth_predictor, wind_length=wind_length, ) else: tracks, visibilities, T_Firsts = self._compute_sparse_tracks( video, queries, segm_mask, grid_size, add_support_grid=False, #(grid_size == 0 or segm_mask is not None), grid_query_frame=grid_query_frame, backward_tracking=backward_tracking, video_depth=video_depth, depth_predictor=depth_predictor, wind_length=wind_length, ) return tracks, visibilities, T_Firsts @spaces.GPU def _compute_dense_tracks( self, video, grid_query_frame, grid_size=30, backward_tracking=False, depth_predictor=None, video_depth=None, wind_length=8 ): *_, H, W = video.shape grid_step = W // grid_size grid_width = W // grid_step grid_height = H // grid_step tracks = visibilities = T_Firsts = None grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device) grid_pts[0, :, 0] = grid_query_frame for offset in tqdm(range(grid_step * grid_step)): ox = offset % grid_step oy = offset // grid_step grid_pts[0, :, 1] = ( torch.arange(grid_width).repeat(grid_height) * grid_step + ox ) grid_pts[0, :, 2] = ( torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy ) tracks_step, visibilities_step, T_First_step = self._compute_sparse_tracks( video=video, queries=grid_pts, backward_tracking=backward_tracking, wind_length=wind_length, video_depth=video_depth, depth_predictor=depth_predictor, ) tracks = smart_cat(tracks, tracks_step, dim=2) visibilities = smart_cat(visibilities, visibilities_step, dim=2) T_Firsts = smart_cat(T_Firsts, T_First_step, dim=1) return tracks, visibilities, T_Firsts @spaces.GPU def _compute_sparse_tracks( self, video, queries, segm_mask=None, grid_size=0, add_support_grid=False, grid_query_frame=0, backward_tracking=False, depth_predictor=None, video_depth=None, wind_length=8, ): B, T, C, H, W = video.shape assert B == 1 video = video.reshape(B * T, C, H, W) video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear") video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) if queries is not None: queries = queries.clone() B, N, D = queries.shape assert D == 3 queries[:, :, 1] *= self.interp_shape[1] / W queries[:, :, 2] *= self.interp_shape[0] / H elif grid_size > 0: grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device) if segm_mask is not None: segm_mask = F.interpolate( segm_mask, tuple(self.interp_shape), mode="nearest" ) point_mask = segm_mask[0, 0][ (grid_pts[0, :, 1]).round().long().cpu(), (grid_pts[0, :, 0]).round().long().cpu(), ].bool() grid_pts_extra = grid_pts[:, point_mask] else: grid_pts_extra = None if grid_pts_extra is not None: total_num = int(grid_pts_extra.shape[1]) total_num = min(800, total_num) pick_idx = torch.randperm(grid_pts_extra.shape[1])[:total_num] grid_pts_extra = grid_pts_extra[:, pick_idx] queries_extra = torch.cat( [ torch.ones_like(grid_pts_extra[:, :, :1]) * grid_query_frame, grid_pts_extra, ], dim=2, ) queries = torch.cat( [torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2, ) if add_support_grid: grid_pts = get_points_on_a_grid(self.support_grid_size, self.interp_shape, device=video.device) grid_pts = torch.cat( [torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2 ) queries = torch.cat([queries, grid_pts], dim=1) ## ----------- estimate the video depth -----------## if video_depth is None: with torch.no_grad(): if video[0].shape[0]>30: vidDepths = [] for i in range(video[0].shape[0]//30+1): if (i+1)*30 > video[0].shape[0]: end_idx = video[0].shape[0] else: end_idx = (i+1)*30 if end_idx == i*30: break video_ = video[0][i*30:end_idx] vidDepths.append(depth_predictor.infer(video_/255)) video_depth = torch.cat(vidDepths, dim=0) else: video_depth = depth_predictor.infer(video[0]/255) video_depth = F.interpolate(video_depth, tuple(self.interp_shape), mode="nearest") # from PIL import Image # import numpy # depth_frame = video_depth[0].detach().cpu() # depth_frame = depth_frame.squeeze(0) # print(depth_frame) # print(depth_frame.min(), depth_frame.max()) # depth_img = (depth_frame * 255).numpy().astype(numpy.uint8) # depth_img = Image.fromarray(depth_img, mode='L') # depth_img.save('outputs/depth_map.png') # frame = video[0, 0].detach().cpu() # frame = frame.permute(1, 2, 0) # frame = (frame * 255).numpy().astype(numpy.uint8) # frame = Image.fromarray(frame, mode='RGB') # frame.save('outputs/frame.png') depths = video_depth rgbds = torch.cat([video, depths[None,...]], dim=2) # get the 3D queries depth_interp=[] for i in range(queries.shape[1]): depth_interp_i = bilinear_sample2d(video_depth[queries[:, i:i+1, 0].long()], queries[:, i:i+1, 1], queries[:, i:i+1, 2]) depth_interp.append(depth_interp_i) depth_interp = torch.cat(depth_interp, dim=1) queries = smart_cat(queries, depth_interp,dim=-1) #NOTE: free the memory of depth_predictor del depth_predictor torch.cuda.empty_cache() t0 = time.time() tracks, __, visibilities = self.model(rgbds=rgbds, queries=queries, iters=6, wind_S=wind_length) print("Time taken for inference: ", time.time()-t0) if backward_tracking: tracks, visibilities = self._compute_backward_tracks( rgbds, queries, tracks, visibilities ) if add_support_grid: queries[:, -self.support_grid_size ** 2 :, 0] = T - 1 if add_support_grid: tracks = tracks[:, :, : -self.support_grid_size ** 2] visibilities = visibilities[:, :, : -self.support_grid_size ** 2] thr = 0.9 visibilities = visibilities > thr # correct query-point predictions # see https://github.com/facebookresearch/co-tracker/issues/28 # TODO: batchify for i in range(len(queries)): queries_t = queries[i, :tracks.size(2), 0].to(torch.int64) arange = torch.arange(0, len(queries_t)) # overwrite the predictions with the query points tracks[i, queries_t, arange] = queries[i, :tracks.size(2), 1:] # correct visibilities, the query points should be visible visibilities[i, queries_t, arange] = True T_First = queries[..., :tracks.size(2), 0].to(torch.uint8) tracks[:, :, :, 0] *= W / float(self.interp_shape[1]) tracks[:, :, :, 1] *= H / float(self.interp_shape[0]) return tracks, visibilities, T_First def _compute_backward_tracks(self, video, queries, tracks, visibilities): inv_video = video.flip(1).clone() inv_queries = queries.clone() inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 inv_tracks, __, inv_visibilities = self.model( rgbds=inv_video, queries=queries, iters=6 ) inv_tracks = inv_tracks.flip(1) inv_visibilities = inv_visibilities.flip(1) mask = tracks == 0 tracks[mask] = inv_tracks[mask] visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]] return tracks, visibilities