Elena commited on
Commit
de73260
·
verified ·
1 Parent(s): 511526f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -3,20 +3,16 @@ from tensorflow.keras.models import load_model
3
  import numpy as np
4
  from PIL import Image
5
 
6
-
7
  model = load_model('xray_image_classifier_model.keras')
8
 
9
  def predict(image):
10
-
11
  img = image.resize((150, 150))
12
  img_array = np.array(img) / 255.0
13
  img_array = np.expand_dims(img_array, axis=0)
14
-
15
  prediction = model.predict(img_array)
16
  predicted_class = 'Pneumonia' if prediction > 0.5 else 'Normal'
17
  return predicted_class
18
 
19
-
20
  css = """
21
  .gradio-container {
22
  background-color: #f5f5f5;
@@ -54,6 +50,7 @@ css = """
54
  text-align: center;
55
  }
56
  """
 
57
  description = """
58
  **Automated Pneumonia Detection via Chest X-ray Classification**
59
 
@@ -66,7 +63,7 @@ This model leverages deep learning techniques to classify chest X-ray images as
66
  - Flask and Gradio for deployment and user interaction
67
 
68
  **Sample Images:**
69
- To test the model, select one of the sample images provided below. Click on an image and then press the "Execute Classification" button to receive the results.
70
  """
71
 
72
  examples = [
@@ -74,7 +71,6 @@ examples = [
74
  ["samples/pneumonia_xray1.png"],
75
  ]
76
 
77
- # Gradio interface set up instructions
78
  with gr.Blocks(css=css) as interface:
79
  gr.Markdown("<h1>Automated Pneumonia Detection via Chest X-ray Classification</h1>")
80
  gr.Markdown("<p>Upload an X-ray image to detect pneumonia.</p>")
@@ -86,7 +82,8 @@ with gr.Blocks(css=css) as interface:
86
  submit_btn = gr.Button("Initiate Diagnostic Analysis", elem_classes=["gr-button"])
87
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
88
 
89
-
90
  gr.Examples(examples=examples, inputs=image_input)
 
 
91
 
92
  interface.launch()
 
3
  import numpy as np
4
  from PIL import Image
5
 
 
6
  model = load_model('xray_image_classifier_model.keras')
7
 
8
  def predict(image):
 
9
  img = image.resize((150, 150))
10
  img_array = np.array(img) / 255.0
11
  img_array = np.expand_dims(img_array, axis=0)
 
12
  prediction = model.predict(img_array)
13
  predicted_class = 'Pneumonia' if prediction > 0.5 else 'Normal'
14
  return predicted_class
15
 
 
16
  css = """
17
  .gradio-container {
18
  background-color: #f5f5f5;
 
50
  text-align: center;
51
  }
52
  """
53
+
54
  description = """
55
  **Automated Pneumonia Detection via Chest X-ray Classification**
56
 
 
63
  - Flask and Gradio for deployment and user interaction
64
 
65
  **Sample Images:**
66
+ To test the model, select one of the sample images provided below. Click on an image and then press the "Initiate Diagnostic Analysis" button to receive the results.
67
  """
68
 
69
  examples = [
 
71
  ["samples/pneumonia_xray1.png"],
72
  ]
73
 
 
74
  with gr.Blocks(css=css) as interface:
75
  gr.Markdown("<h1>Automated Pneumonia Detection via Chest X-ray Classification</h1>")
76
  gr.Markdown("<p>Upload an X-ray image to detect pneumonia.</p>")
 
82
  submit_btn = gr.Button("Initiate Diagnostic Analysis", elem_classes=["gr-button"])
83
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
84
 
 
85
  gr.Examples(examples=examples, inputs=image_input)
86
+
87
+ gr.Markdown(description)
88
 
89
  interface.launch()