Elena commited on
Commit
511526f
·
verified ·
1 Parent(s): 1864522

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -29,7 +29,7 @@ css = """
29
  font-size: 16px;
30
  }
31
  .gr-button:hover {
32
- background-color: #0056b3;
33
  }
34
  .gr-textbox, .gr-image {
35
  border: 2px dashed #007bff;
@@ -54,7 +54,20 @@ css = """
54
  text-align: center;
55
  }
56
  """
 
 
 
 
57
 
 
 
 
 
 
 
 
 
 
58
 
59
  examples = [
60
  ["samples/normal_xray1.png"],
@@ -63,14 +76,14 @@ examples = [
63
 
64
  # Gradio interface set up instructions
65
  with gr.Blocks(css=css) as interface:
66
- gr.Markdown("<h1>Chest X-ray Pneumonia Classifier</h1>")
67
- gr.Markdown("<p>Upload an X-ray image to classify it as 'Pneumonia' or 'Normal'.</p>")
68
 
69
  with gr.Row():
70
  image_input = gr.Image(label="Drop Image Here", type="pil", elem_classes=["gr-image", "gr-box-text"])
71
  output = gr.Textbox(label="Model Analysis Output", elem_classes=["gr-textbox", "gr-box-text"])
72
 
73
- submit_btn = gr.Button("Classify X-ray", elem_classes=["gr-button"])
74
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
75
 
76
 
 
29
  font-size: 16px;
30
  }
31
  .gr-button:hover {
32
+ background-color: #007bff;
33
  }
34
  .gr-textbox, .gr-image {
35
  border: 2px dashed #007bff;
 
54
  text-align: center;
55
  }
56
  """
57
+ description = """
58
+ **Automated Pneumonia Detection via Chest X-ray Classification**
59
+
60
+ This model leverages deep learning techniques to classify chest X-ray images as either 'Pneumonia' or 'Normal.' By utilizing the InceptionV3 architecture for transfer learning, combined with data preprocessing and augmentation, the model aims to deliver powerful performance in medical image analysis. It enhances the automation of diagnostic processes, aiding in the detection of pneumonia with high accuracy.
61
 
62
+ **Technologies Employed:**
63
+ - TensorFlow & Keras for model development
64
+ - InceptionV3 for transfer learning
65
+ - Numpy, Pandas, and Matplotlib for data handling and visualization
66
+ - Flask and Gradio for deployment and user interaction
67
+
68
+ **Sample Images:**
69
+ To test the model, select one of the sample images provided below. Click on an image and then press the "Execute Classification" button to receive the results.
70
+ """
71
 
72
  examples = [
73
  ["samples/normal_xray1.png"],
 
76
 
77
  # Gradio interface set up instructions
78
  with gr.Blocks(css=css) as interface:
79
+ gr.Markdown("<h1>Automated Pneumonia Detection via Chest X-ray Classification</h1>")
80
+ gr.Markdown("<p>Upload an X-ray image to detect pneumonia.</p>")
81
 
82
  with gr.Row():
83
  image_input = gr.Image(label="Drop Image Here", type="pil", elem_classes=["gr-image", "gr-box-text"])
84
  output = gr.Textbox(label="Model Analysis Output", elem_classes=["gr-textbox", "gr-box-text"])
85
 
86
+ submit_btn = gr.Button("Initiate Diagnostic Analysis", elem_classes=["gr-button"])
87
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
88
 
89