File size: 7,707 Bytes
ca9f82a
f388c93
 
 
 
 
 
6b10944
12d4886
f388c93
 
12d4886
e7761b5
ca9f82a
 
 
f388c93
ca9f82a
 
 
8071ff2
ca9f82a
 
 
2ef19ee
ca9f82a
 
f388c93
ca9f82a
 
 
f388c93
 
949f8bc
451d8eb
ca9f82a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451d8eb
8071ff2
 
ca9f82a
e7761b5
2ef19ee
93f4a81
2ef19ee
ca9f82a
 
8071ff2
ca9f82a
 
 
8071ff2
ca9f82a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8071ff2
ca9f82a
 
2ef19ee
f388c93
ca9f82a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
from google import genai
from google.genai import types
import os
from PIL import Image
import io
import base64
import json

app = Flask(__name__)

GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")

client = genai.Client(
    api_key=GOOGLE_API_KEY,
)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/free')
def indexx():
    return render_template('maj.html')

@app.route('/solve', methods=['POST'])
def solve():
    try:
        image_data = request.files['image'].read()
        img = Image.open(io.BytesIO(image_data))

        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        def generate():
            mode = 'starting'
            try:
                response = client.models.generate_content_stream(
                    model="gemini-2.5-pro-exp-03-25",
                    contents=[
                        {'inline_data': {'mime_type': 'image/png', 'data': img_str}},
                        """Résous cet exercice en français avec du LaTeX. 
                        Si nécessaire, utilise du code Python pour effectuer les calculs complexes.
                        Présente ta solution de façon claire et espacée."""
                    ],
                    config=types.GenerateContentConfig(
                        thinking_config=types.ThinkingConfig(
                            thinking_budget=8000
                        ),
                        tools=[types.Tool(
                            code_execution=types.ToolCodeExecution()
                        )]
                    )
                )

                for chunk in response:
                    for part in chunk.candidates[0].content.parts:
                        if hasattr(part, 'thought') and part.thought:
                            if mode != "thinking":
                                yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n'
                                mode = "thinking"
                        elif hasattr(part, 'executable_code') and part.executable_code:
                            if mode != "executing_code":
                                yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n'
                                mode = "executing_code"
                            code_block_open = "```python\n"
                            code_block_close = "\n```"
                            yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n'
                        elif hasattr(part, 'code_execution_result') and part.code_execution_result:
                            if mode != "code_result":
                                yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n'
                                mode = "code_result"
                            result_block_open = "Résultat d'exécution:\n```\n"
                            result_block_close = "\n```"
                            yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n'
                        else:
                            if mode != "answering":
                                yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n'
                                mode = "answering"
                            if hasattr(part, 'text') and part.text:
                                yield 'data: ' + json.dumps({"content": part.text}) + '\n\n'

            except Exception as e:
                print(f"Error during generation: {e}")
                yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n'

        return Response(
            stream_with_context(generate()),
            mimetype='text/event-stream',
            headers={
                'Cache-Control': 'no-cache',
                'X-Accel-Buffering': 'no'
            }
        )

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/solved', methods=['POST'])
def solved():
    try:
        image_data = request.files['image'].read()
        img = Image.open(io.BytesIO(image_data))

        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        def generate():
            mode = 'starting'
            try:
                response = client.models.generate_content_stream(
                    model="gemini-2.5-flash-preview-04-17",
                    contents=[
                        {'inline_data': {'mime_type': 'image/png', 'data': img_str}},
                        """Résous cet exercice en français avec du LaTeX.
                        Si nécessaire, utilise du code Python pour effectuer les calculs complexes.
                        Présente ta solution de façon claire et espacée."""
                    ],
                    config=types.GenerateContentConfig(
                        tools=[types.Tool(
                            code_execution=types.ToolCodeExecution()
                        )]
                    )
                )

                for chunk in response:
                    for part in chunk.candidates[0].content.parts:
                        if hasattr(part, 'thought') and part.thought:
                            if mode != "thinking":
                                yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n'
                                mode = "thinking"
                        elif hasattr(part, 'executable_code') and part.executable_code:
                            if mode != "executing_code":
                                yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n'
                                mode = "executing_code"
                            code_block_open = "```python\n"
                            code_block_close = "\n```"
                            yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n'
                        elif hasattr(part, 'code_execution_result') and part.code_execution_result:
                            if mode != "code_result":
                                yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n'
                                mode = "code_result"
                            result_block_open = "Résultat d'exécution:\n```\n"
                            result_block_close = "\n```"
                            yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n'
                        else:
                            if mode != "answering":
                                yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n'
                                mode = "answering"
                            if hasattr(part, 'text') and part.text:
                                yield 'data: ' + json.dumps({"content": part.text}) + '\n\n'

            except Exception as e:
                print(f"Error during generation: {e}")
                yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n'

        return Response(
            stream_with_context(generate()),
            mimetype='text/event-stream',
            headers={
                'Cache-Control': 'no-cache',
                'X-Accel-Buffering': 'no'
            }
        )

    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)