Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
|
2 |
from google import genai
|
3 |
from google.genai import types
|
4 |
import os
|
@@ -6,289 +6,167 @@ from PIL import Image
|
|
6 |
import io
|
7 |
import base64
|
8 |
import json
|
9 |
-
import logging
|
10 |
-
from werkzeug.utils import secure_filename
|
11 |
-
import mimetypes
|
12 |
-
|
13 |
-
# Configuration du logging
|
14 |
-
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
17 |
-
)
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
22 |
-
# Configuration
|
23 |
-
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16 MB max de taille d'image
|
24 |
-
app.config['MAX_CONTENT_LENGTH'] = MAX_CONTENT_LENGTH
|
25 |
-
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif', 'webp'}
|
26 |
-
|
27 |
-
# Récupération de la clé API depuis les variables d'environnement
|
28 |
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
|
29 |
-
if not GOOGLE_API_KEY:
|
30 |
-
logger.error("La clé API Gemini n'est pas configurée. Définissez la variable d'environnement GEMINI_API_KEY.")
|
31 |
-
|
32 |
-
# Initialisation du client Gemini
|
33 |
-
try:
|
34 |
-
client = genai.Client(api_key=GOOGLE_API_KEY)
|
35 |
-
logger.info("Client Gemini initialisé avec succès")
|
36 |
-
except Exception as e:
|
37 |
-
logger.error(f"Erreur lors de l'initialisation du client Gemini: {e}")
|
38 |
-
client = None
|
39 |
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
return
|
44 |
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
max_size = 1600 # pixels
|
53 |
-
if max(img.size) > max_size:
|
54 |
-
ratio = max_size / max(img.size)
|
55 |
-
new_size = (int(img.size[0] * ratio), int(img.size[1] * ratio))
|
56 |
-
img = img.resize(new_size, Image.LANCZOS)
|
57 |
-
logger.info(f"Image redimensionnée à {new_size}")
|
58 |
-
|
59 |
buffered = io.BytesIO()
|
60 |
img.save(buffered, format="PNG")
|
61 |
img_str = base64.b64encode(buffered.getvalue()).decode()
|
62 |
-
return img_str
|
63 |
-
except Exception as e:
|
64 |
-
logger.error(f"Erreur lors du traitement de l'image: {e}")
|
65 |
-
raise ValueError(f"Impossible de traiter l'image: {str(e)}")
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
-
except Exception as e:
|
91 |
-
logger.error(f"Erreur lors de la génération de contenu avec {model_id}: {e}")
|
92 |
-
raise ValueError(f"Erreur lors de la génération: {str(e)}")
|
93 |
-
|
94 |
-
|
95 |
-
def stream_response(response_generator):
|
96 |
-
"""Fonction qui gère le streaming des réponses"""
|
97 |
-
mode = 'starting'
|
98 |
-
try:
|
99 |
-
for chunk in response_generator:
|
100 |
-
# Vérification de validité du chunk
|
101 |
-
if not hasattr(chunk, 'candidates') or not chunk.candidates:
|
102 |
-
continue
|
103 |
-
|
104 |
-
for part in chunk.candidates[0].content.parts:
|
105 |
-
# Gestion du mode de pensée
|
106 |
-
if hasattr(part, 'thought') and part.thought:
|
107 |
-
if mode != "thinking":
|
108 |
-
yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
|
109 |
-
mode = "thinking"
|
110 |
-
# Mode de réponse
|
111 |
-
else:
|
112 |
-
if mode != "answering":
|
113 |
-
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
|
114 |
-
mode = "answering"
|
115 |
-
|
116 |
-
# Envoi du contenu s'il existe
|
117 |
-
if hasattr(part, 'text') and part.text:
|
118 |
-
yield f'data: {json.dumps({"content": part.text})}\n\n'
|
119 |
-
|
120 |
-
except Exception as e:
|
121 |
-
logger.error(f"Erreur pendant le streaming: {e}")
|
122 |
-
yield f'data: {json.dumps({"error": str(e)})}\n\n'
|
123 |
-
|
124 |
|
125 |
-
@app.route('/')
|
126 |
-
def index():
|
127 |
-
"""Page d'accueil principale"""
|
128 |
-
try:
|
129 |
-
return render_template('index.html')
|
130 |
except Exception as e:
|
131 |
-
|
132 |
-
return "Une erreur est survenue. Veuillez réessayer plus tard.", 500
|
133 |
-
|
134 |
-
|
135 |
-
@app.route('/free')
|
136 |
-
def maintenance():
|
137 |
-
"""Page de maintenance"""
|
138 |
-
try:
|
139 |
-
return render_template('maj.html')
|
140 |
-
except Exception as e:
|
141 |
-
logger.error(f"Erreur lors du rendu de maj.html: {e}")
|
142 |
-
return "Page en maintenance. Veuillez revenir plus tard.", 503
|
143 |
-
|
144 |
-
|
145 |
-
@app.route('/health')
|
146 |
-
def health_check():
|
147 |
-
"""Endpoint de vérification de santé pour monitoring"""
|
148 |
-
status = {
|
149 |
-
"status": "ok",
|
150 |
-
"gemini_client": client is not None
|
151 |
-
}
|
152 |
-
return jsonify(status)
|
153 |
-
|
154 |
-
|
155 |
-
@app.route('/solve', methods=['POST'])
|
156 |
-
def solve():
|
157 |
-
"""Endpoint utilisant le modèle Pro avec capacités de réflexion étendues"""
|
158 |
-
if not client:
|
159 |
-
return jsonify({"error": "Service non disponible - client Gemini non initialisé"}), 503
|
160 |
-
|
161 |
-
try:
|
162 |
-
# Vérification de l'image
|
163 |
-
if 'image' not in request.files:
|
164 |
-
return jsonify({"error": "Aucune image n'a été envoyée"}), 400
|
165 |
-
|
166 |
-
file = request.files['image']
|
167 |
-
|
168 |
-
if file.filename == '':
|
169 |
-
return jsonify({"error": "Aucun fichier sélectionné"}), 400
|
170 |
-
|
171 |
-
if not allowed_file(file.filename):
|
172 |
-
return jsonify({"error": "Format de fichier non autorisé"}), 400
|
173 |
-
|
174 |
-
# Détection du type de contenu
|
175 |
-
file_data = file.read()
|
176 |
-
content_type = mimetypes.guess_type(file.filename)[0]
|
177 |
-
if not content_type or not content_type.startswith('image/'):
|
178 |
-
return jsonify({"error": "Le fichier envoyé n'est pas une image valide"}), 400
|
179 |
-
|
180 |
-
# Traitement de l'image
|
181 |
-
try:
|
182 |
-
img_str = process_image(file_data)
|
183 |
-
except ValueError as e:
|
184 |
-
return jsonify({"error": str(e)}), 400
|
185 |
-
|
186 |
-
# Génération de la réponse
|
187 |
-
try:
|
188 |
-
response_generator = generate_ai_response(
|
189 |
-
model_id="gemini-2.5-pro-exp-03-25",
|
190 |
-
img_str=img_str,
|
191 |
-
prompt="Résous ça en français with rendering latex",
|
192 |
-
thinking_budget=8000
|
193 |
-
)
|
194 |
-
|
195 |
-
return Response(
|
196 |
-
stream_with_context(stream_response(response_generator)),
|
197 |
-
mimetype='text/event-stream',
|
198 |
-
headers={
|
199 |
-
'Cache-Control': 'no-cache',
|
200 |
-
'X-Accel-Buffering': 'no'
|
201 |
-
}
|
202 |
-
)
|
203 |
-
except ValueError as e:
|
204 |
-
return jsonify({"error": str(e)}), 500
|
205 |
-
|
206 |
-
except Exception as e:
|
207 |
-
logger.error(f"Erreur dans /solve: {e}")
|
208 |
-
return jsonify({"error": "Une erreur inconnue est survenue"}), 500
|
209 |
-
|
210 |
|
211 |
@app.route('/solved', methods=['POST'])
|
212 |
def solved():
|
213 |
-
"""Endpoint utilisant le modèle Flash pour des réponses plus rapides"""
|
214 |
-
if not client:
|
215 |
-
return jsonify({"error": "Service non disponible - client Gemini non initialisé"}), 503
|
216 |
-
|
217 |
try:
|
218 |
-
|
219 |
-
|
220 |
-
return jsonify({"error": "Aucune image n'a été envoyée"}), 400
|
221 |
-
|
222 |
-
file = request.files['image']
|
223 |
-
|
224 |
-
if file.filename == '':
|
225 |
-
return jsonify({"error": "Aucun fichier sélectionné"}), 400
|
226 |
-
|
227 |
-
if not allowed_file(file.filename):
|
228 |
-
return jsonify({"error": "Format de fichier non autorisé"}), 400
|
229 |
-
|
230 |
-
# Détection du type de contenu
|
231 |
-
file_data = file.read()
|
232 |
-
content_type = mimetypes.guess_type(file.filename)[0]
|
233 |
-
if not content_type or not content_type.startswith('image/'):
|
234 |
-
return jsonify({"error": "Le fichier envoyé n'est pas une image valide"}), 400
|
235 |
-
|
236 |
-
# Traitement de l'image
|
237 |
-
try:
|
238 |
-
img_str = process_image(file_data)
|
239 |
-
except ValueError as e:
|
240 |
-
return jsonify({"error": str(e)}), 400
|
241 |
-
|
242 |
-
# Génération de la réponse
|
243 |
-
try:
|
244 |
-
response_generator = generate_ai_response(
|
245 |
-
model_id="gemini-2.5-flash-preview-04-17",
|
246 |
-
img_str=img_str,
|
247 |
-
prompt="Résous ça en français with rendering latex"
|
248 |
-
)
|
249 |
-
|
250 |
-
return Response(
|
251 |
-
stream_with_context(stream_response(response_generator)),
|
252 |
-
mimetype='text/event-stream',
|
253 |
-
headers={
|
254 |
-
'Cache-Control': 'no-cache',
|
255 |
-
'X-Accel-Buffering': 'no'
|
256 |
-
}
|
257 |
-
)
|
258 |
-
except ValueError as e:
|
259 |
-
return jsonify({"error": str(e)}), 500
|
260 |
-
|
261 |
-
except Exception as e:
|
262 |
-
logger.error(f"Erreur dans /solved: {e}")
|
263 |
-
return jsonify({"error": "Une erreur inconnue est survenue"}), 500
|
264 |
-
|
265 |
-
|
266 |
-
@app.errorhandler(413)
|
267 |
-
def request_entity_too_large(error):
|
268 |
-
"""Gestion de l'erreur de fichier trop volumineux"""
|
269 |
-
return jsonify({"error": f"Le fichier est trop volumineux. Taille maximale: {MAX_CONTENT_LENGTH/1024/1024} MB"}), 413
|
270 |
-
|
271 |
-
|
272 |
-
@app.errorhandler(404)
|
273 |
-
def page_not_found(error):
|
274 |
-
"""Gestion de l'erreur 404"""
|
275 |
-
return jsonify({"error": "Page non trouvée"}), 404
|
276 |
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
|
|
|
|
284 |
|
285 |
if __name__ == '__main__':
|
286 |
-
|
287 |
-
if not client:
|
288 |
-
logger.warning("L'application démarre sans client Gemini initialisé. Certaines fonctionnalités seront indisponibles.")
|
289 |
-
|
290 |
-
# Configuration pour le développement
|
291 |
-
debug_mode = os.environ.get("FLASK_DEBUG", "False").lower() == "true"
|
292 |
-
|
293 |
-
port = int(os.environ.get("PORT", 5000))
|
294 |
-
app.run(debug=debug_mode, host='0.0.0.0', port=port)
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
|
2 |
from google import genai
|
3 |
from google.genai import types
|
4 |
import os
|
|
|
6 |
import io
|
7 |
import base64
|
8 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
client = genai.Client(
|
15 |
+
api_key=GOOGLE_API_KEY,
|
16 |
+
)
|
17 |
|
18 |
+
@app.route('/')
|
19 |
+
def index():
|
20 |
+
return render_template('index.html')
|
21 |
|
22 |
+
@app.route('/free')
|
23 |
+
def indexx():
|
24 |
+
return render_template('maj.html')
|
25 |
|
26 |
+
@app.route('/solve', methods=['POST'])
|
27 |
+
def solve():
|
28 |
try:
|
29 |
+
image_data = request.files['image'].read()
|
30 |
+
img = Image.open(io.BytesIO(image_data))
|
31 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
buffered = io.BytesIO()
|
33 |
img.save(buffered, format="PNG")
|
34 |
img_str = base64.b64encode(buffered.getvalue()).decode()
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
def generate():
|
37 |
+
mode = 'starting'
|
38 |
+
try:
|
39 |
+
response = client.models.generate_content_stream(
|
40 |
+
model="gemini-2.5-pro-exp-03-25",
|
41 |
+
contents=[
|
42 |
+
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
|
43 |
+
"""Résous cet exercice en français avec du LaTeX.
|
44 |
+
Si nécessaire, utilise du code Python pour effectuer les calculs complexes.
|
45 |
+
Présente ta solution de façon claire et espacée."""
|
46 |
+
],
|
47 |
+
config=types.GenerateContentConfig(
|
48 |
+
thinking_config=types.ThinkingConfig(
|
49 |
+
thinking_budget=8000
|
50 |
+
),
|
51 |
+
tools=[types.Tool(
|
52 |
+
code_execution=types.ToolCodeExecution()
|
53 |
+
)]
|
54 |
+
)
|
55 |
+
)
|
56 |
+
|
57 |
+
for chunk in response:
|
58 |
+
for part in chunk.candidates[0].content.parts:
|
59 |
+
if hasattr(part, 'thought') and part.thought:
|
60 |
+
if mode != "thinking":
|
61 |
+
yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n'
|
62 |
+
mode = "thinking"
|
63 |
+
elif hasattr(part, 'executable_code') and part.executable_code:
|
64 |
+
if mode != "executing_code":
|
65 |
+
yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n'
|
66 |
+
mode = "executing_code"
|
67 |
+
code_block_open = "```python\n"
|
68 |
+
code_block_close = "\n```"
|
69 |
+
yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n'
|
70 |
+
elif hasattr(part, 'code_execution_result') and part.code_execution_result:
|
71 |
+
if mode != "code_result":
|
72 |
+
yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n'
|
73 |
+
mode = "code_result"
|
74 |
+
result_block_open = "Résultat d'exécution:\n```\n"
|
75 |
+
result_block_close = "\n```"
|
76 |
+
yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n'
|
77 |
+
else:
|
78 |
+
if mode != "answering":
|
79 |
+
yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n'
|
80 |
+
mode = "answering"
|
81 |
+
if hasattr(part, 'text') and part.text:
|
82 |
+
yield 'data: ' + json.dumps({"content": part.text}) + '\n\n'
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error during generation: {e}")
|
86 |
+
yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n'
|
87 |
+
|
88 |
+
return Response(
|
89 |
+
stream_with_context(generate()),
|
90 |
+
mimetype='text/event-stream',
|
91 |
+
headers={
|
92 |
+
'Cache-Control': 'no-cache',
|
93 |
+
'X-Accel-Buffering': 'no'
|
94 |
+
}
|
95 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
+
return jsonify({'error': str(e)}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
@app.route('/solved', methods=['POST'])
|
101 |
def solved():
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
+
image_data = request.files['image'].read()
|
104 |
+
img = Image.open(io.BytesIO(image_data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
buffered = io.BytesIO()
|
107 |
+
img.save(buffered, format="PNG")
|
108 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
109 |
|
110 |
+
def generate():
|
111 |
+
mode = 'starting'
|
112 |
+
try:
|
113 |
+
response = client.models.generate_content_stream(
|
114 |
+
model="gemini-2.5-flash-preview-04-17",
|
115 |
+
contents=[
|
116 |
+
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
|
117 |
+
"""Résous cet exercice en français avec du LaTeX.
|
118 |
+
Si nécessaire, utilise du code Python pour effectuer les calculs complexes.
|
119 |
+
Présente ta solution de façon claire et espacée."""
|
120 |
+
],
|
121 |
+
config=types.GenerateContentConfig(
|
122 |
+
tools=[types.Tool(
|
123 |
+
code_execution=types.ToolCodeExecution()
|
124 |
+
)]
|
125 |
+
)
|
126 |
+
)
|
127 |
+
|
128 |
+
for chunk in response:
|
129 |
+
for part in chunk.candidates[0].content.parts:
|
130 |
+
if hasattr(part, 'thought') and part.thought:
|
131 |
+
if mode != "thinking":
|
132 |
+
yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n'
|
133 |
+
mode = "thinking"
|
134 |
+
elif hasattr(part, 'executable_code') and part.executable_code:
|
135 |
+
if mode != "executing_code":
|
136 |
+
yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n'
|
137 |
+
mode = "executing_code"
|
138 |
+
code_block_open = "```python\n"
|
139 |
+
code_block_close = "\n```"
|
140 |
+
yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n'
|
141 |
+
elif hasattr(part, 'code_execution_result') and part.code_execution_result:
|
142 |
+
if mode != "code_result":
|
143 |
+
yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n'
|
144 |
+
mode = "code_result"
|
145 |
+
result_block_open = "Résultat d'exécution:\n```\n"
|
146 |
+
result_block_close = "\n```"
|
147 |
+
yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n'
|
148 |
+
else:
|
149 |
+
if mode != "answering":
|
150 |
+
yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n'
|
151 |
+
mode = "answering"
|
152 |
+
if hasattr(part, 'text') and part.text:
|
153 |
+
yield 'data: ' + json.dumps({"content": part.text}) + '\n\n'
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error during generation: {e}")
|
157 |
+
yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n'
|
158 |
+
|
159 |
+
return Response(
|
160 |
+
stream_with_context(generate()),
|
161 |
+
mimetype='text/event-stream',
|
162 |
+
headers={
|
163 |
+
'Cache-Control': 'no-cache',
|
164 |
+
'X-Accel-Buffering': 'no'
|
165 |
+
}
|
166 |
+
)
|
167 |
|
168 |
+
except Exception as e:
|
169 |
+
return jsonify({'error': str(e)}), 500
|
170 |
|
171 |
if __name__ == '__main__':
|
172 |
+
app.run(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|