|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import random |
|
from scipy.stats import entropy as scipy_entropy |
|
import time |
|
import seaborn as sns |
|
|
|
|
|
seqlen = 60 |
|
steps = 120 |
|
min_run, max_run = 1, 2 |
|
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} |
|
bases = ['A', 'C', 'G', 'T'] |
|
|
|
def find_local_min_runs(profile, min_run=1, max_run=2): |
|
result = [] |
|
N = len(profile) |
|
i = 0 |
|
while i < N: |
|
run_val = profile[i] |
|
run_length = 1 |
|
while i + run_length < N and profile[i + run_length] == run_val: |
|
run_length += 1 |
|
if min_run <= run_length <= max_run: |
|
result.append((i, i + run_length - 1, run_val)) |
|
i += run_length |
|
return result |
|
|
|
def bio_mutate(seq): |
|
r = random.random() |
|
if r < 0.70: |
|
idx = random.randint(0, len(seq)-1) |
|
orig = seq[idx] |
|
prob = random.random() |
|
if orig in 'AG': |
|
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) |
|
elif orig in 'CT': |
|
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) |
|
else: |
|
newbase = random.choice([b for b in bases if b != orig]) |
|
seq = seq[:idx] + newbase + seq[idx+1:] |
|
elif r < 0.80: |
|
idx = random.randint(0, len(seq)-1) |
|
ins = ''.join(random.choices(bases, k=random.randint(1, 3))) |
|
seq = seq[:idx] + ins + seq[idx:] |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
elif r < 0.90: |
|
if len(seq) > 4: |
|
idx = random.randint(0, len(seq)-2) |
|
dell = random.randint(1, min(3, len(seq)-idx)) |
|
seq = seq[:idx] + seq[idx+dell:] |
|
else: |
|
if len(seq) > 10: |
|
start = random.randint(0, len(seq)-6) |
|
end = start + random.randint(3,6) |
|
subseq = seq[start:end] |
|
subseq = subseq[::-1] |
|
seq = seq[:start] + subseq + seq[end:] |
|
while len(seq) < seqlen: |
|
seq += random.choice(bases) |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
return seq |
|
|
|
def compute_autocorr(profile): |
|
profile = profile - np.mean(profile) |
|
result = np.correlate(profile, profile, mode='full') |
|
result = result[result.size // 2:] |
|
norm = np.max(result) if np.max(result)!=0 else 1 |
|
return result[:10]/norm |
|
|
|
def compute_entropy(profile): |
|
vals, counts = np.unique(profile, return_counts=True) |
|
p = counts / counts.sum() |
|
return scipy_entropy(p, base=2) |
|
|
|
|
|
st.title("🧬 Эволюция ДНК-подобной последовательности") |
|
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.") |
|
|
|
|
|
|
|
def plot_density(runs, ax, steps): |
|
machine_starts = [start for start, _, _ in runs] |
|
machine_ends = [end for _, end, _ in runs] |
|
timeline = np.zeros(steps) |
|
|
|
for start, end, _ in runs: |
|
timeline[start:end+1] = 1 |
|
|
|
sns.lineplot(x=np.arange(steps), y=timeline, ax=ax, color='darkgreen') |
|
ax.set_title("Плотность биомашин по шагам") |
|
ax.set_xlabel("Шаг") |
|
ax.set_ylabel("Плотность биомашин") |
|
|
|
def plot_heatmap(runs, ax, steps): |
|
heatmap_matrix = np.zeros((steps, len(runs))) |
|
|
|
for idx, (start, end, _) in enumerate(runs): |
|
heatmap_matrix[start:end+1, idx] = 1 |
|
|
|
sns.heatmap(heatmap_matrix, ax=ax, cmap="YlGnBu", cbar=True) |
|
ax.set_title("Тепловая карта: Распределение биомашин по времени") |
|
ax.set_xlabel("Номер биомашины") |
|
ax.set_ylabel("Шаг") |
|
|
|
def update_visualization(step, seq, runs, torsion_profile, stat_bist_counts, acorr, steps, lags_shown, ent): |
|
fig, axs = plt.subplots(5, 1, figsize=(10, 12)) |
|
plt.subplots_adjust(hspace=0.45) |
|
|
|
axs[0].cla() |
|
axs[1].cla() |
|
axs[2].cla() |
|
axs[3].cla() |
|
axs[4].cla() |
|
|
|
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол") |
|
for start, end, val in runs: |
|
axs[0].axvspan(start, end, color="red", alpha=0.3) |
|
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5) |
|
axs[0].set_ylim(-200, 200) |
|
axs[0].set_xlabel("Позиция") |
|
axs[0].set_ylabel("Торсионный угол (град.)") |
|
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}") |
|
axs[0].legend() |
|
|
|
plot_density(runs, axs[3], steps) |
|
plot_heatmap(runs, axs[4], steps) |
|
|
|
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4) |
|
axs[1].set_xlabel("Шаг") |
|
axs[1].set_ylabel("Число машин") |
|
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1)) |
|
axs[1].set_title("Динамика: число 'биомашин'") |
|
|
|
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal', alpha=0.7) |
|
axs[2].set_xlabel("Лаг") |
|
axs[2].set_ylabel("Автокорреляция") |
|
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия") |
|
axs[2].text(0.70, 0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes) |
|
|
|
plot_placeholder.pyplot(fig) |
|
|
|
|
|
if st.button("▶️ Запустить симуляцию"): |
|
seq = ''.join(random.choices(bases, k=seqlen)) |
|
stat_bist_counts = [] |
|
stat_entropy = [] |
|
stat_autocorr = [] |
|
|
|
plot_placeholder = st.empty() |
|
|
|
for step in range(steps): |
|
if step != 0: |
|
seq = bio_mutate(seq) |
|
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) |
|
runs = find_local_min_runs(torsion_profile, min_run, max_run) |
|
stat_bist_counts.append(len(runs)) |
|
ent = compute_entropy(torsion_profile) |
|
stat_entropy.append(ent) |
|
acorr = compute_autocorr(torsion_profile) |
|
|
|
|
|
update_visualization(step, seq, runs, torsion_profile, stat_bist_counts, acorr, steps, 6, ent) |
|
time.sleep(0.5) |
|
|