|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import random |
|
|
|
|
|
def sequence_to_torsion(seq): |
|
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} |
|
return np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) |
|
|
|
|
|
def correlation_dimension(data, max_radius=20, min_points=5): |
|
N = len(data) |
|
dimensions = [] |
|
for radius in range(1, max_radius): |
|
count = 0 |
|
for i in range(N): |
|
for j in range(i + 1, N): |
|
if np.abs(data[i] - data[j]) < radius: |
|
count += 1 |
|
if count > min_points: |
|
dimension = np.log(count) / np.log(radius) |
|
dimensions.append(dimension) |
|
|
|
return np.mean(dimensions) if dimensions else 0 |
|
|
|
|
|
|
|
seqlen = 60 |
|
bases = ['A', 'C', 'G', 'T'] |
|
|
|
def bio_mutate(seq): |
|
r = random.random() |
|
if r < 0.70: |
|
idx = random.randint(0, len(seq)-1) |
|
orig = seq[idx] |
|
prob = random.random() |
|
if orig in 'AG': |
|
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) |
|
elif orig in 'CT': |
|
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) |
|
else: |
|
newbase = random.choice([b for b in bases if b != orig]) |
|
seq = seq[:idx] + newbase + seq[idx+1:] |
|
elif r < 0.80: |
|
idx = random.randint(0, len(seq)-1) |
|
ins = ''.join(random.choices(bases, k=random.randint(1, 3))) |
|
seq = seq[:idx] + ins + seq[idx:] |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
elif r < 0.90: |
|
if len(seq) > 4: |
|
idx = random.randint(0, len(seq)-2) |
|
dell = random.randint(1, min(3, len(seq)-idx)) |
|
seq = seq[:idx] + seq[idx+dell:] |
|
else: |
|
if len(seq) > 10: |
|
start = random.randint(0, len(seq)-6) |
|
end = start + random.randint(3,6) |
|
subseq = seq[start:end][::-1] |
|
seq = seq[:start] + subseq + seq[end:] |
|
while len(seq) < seqlen: |
|
seq += random.choice(bases) |
|
return seq[:seqlen] |
|
|
|
|
|
|
|
import streamlit as st |
|
import time |
|
|
|
st.title("🔴 Живой эфир мутаций ДНК с фрактальной размерностью") |
|
|
|
start = st.button("▶️ Старт эфира") |
|
stop = st.checkbox("⏹️ Остановить") |
|
|
|
plot_placeholder = st.empty() |
|
|
|
if start: |
|
seq = ''.join(random.choices(bases, k=seqlen)) |
|
step = 0 |
|
stat_fractal_dimension = [] |
|
|
|
while True: |
|
if stop: |
|
st.warning("⏹️ Эфир остановлен пользователем.") |
|
break |
|
|
|
if step != 0: |
|
seq = bio_mutate(seq) |
|
|
|
torsion_profile = sequence_to_torsion(seq) |
|
fractal_dim = correlation_dimension(torsion_profile) |
|
stat_fractal_dimension.append(fractal_dim) |
|
|
|
|
|
fig, axs = plt.subplots(2, 1, figsize=(10, 8)) |
|
plt.subplots_adjust(hspace=0.45) |
|
|
|
axs[0].plot(torsion_profile, color='royalblue') |
|
axs[0].set_title(f"Шаг {step}: {seq}") |
|
axs[0].set_ylabel("Торсионный угол") |
|
|
|
axs[1].plot(stat_fractal_dimension, '-o', color='green', markersize=4) |
|
axs[1].set_title(f"Фрактальная размерность: {fractal_dim:.3f}") |
|
axs[1].set_xlabel("Шаг") |
|
|
|
plot_placeholder.pyplot(fig) |
|
plt.close(fig) |
|
|
|
step += 1 |
|
time.sleep(0.3) |
|
|