File size: 5,421 Bytes
cab60db 3ffebe8 ce76895 f1e60b9 cab60db 396e0c2 3ffebe8 ce76895 3ffebe8 cab60db f1e60b9 3ffebe8 cab60db 3ffebe8 f1e60b9 3ffebe8 f1e60b9 3ffebe8 396e0c2 f1e60b9 3ffebe8 f1e60b9 3ffebe8 396e0c2 ce76895 3ffebe8 cab60db 396e0c2 ce76895 396e0c2 cab60db ce76895 3ffebe8 ce76895 3ffebe8 f1e60b9 396e0c2 3ffebe8 396e0c2 f1e60b9 396e0c2 f1e60b9 932e9d2 f1e60b9 396e0c2 f1e60b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
from matplotlib.animation import FuncAnimation
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
# Функции остаются такими же
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result)!=0 else 1
return result[:10]/norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- Streamlit интерфейс ---
st.title("🧬 Эволюция ДНК-подобной последовательности")
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.")
# Кнопка запуска симуляции
if st.button("▶️ Запустить симуляцию"):
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
plot_placeholder = st.empty()
# Создание фигуры и осей
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.45)
# Начальная инициализация для графиков
line1, = axs[0].plot([], [], color='royalblue', label="Торсионный угол")
runs_patch = axs[0].axvspan(0, 0, color="red", alpha=0.3)
line2, = axs[1].plot([], [], '-o', color='crimson', markersize=4)
bar = axs[2].bar([], [], color='teal', alpha=0.7)
axs[0].set_ylim(-200, 200)
axs[0].set_xlabel("Позиция")
axs[0].set_ylabel("Торсионный угол (град.)")
axs[0].set_title(f"Шаг 0: {seq}")
axs[0].legend()
axs[1].set_xlabel("Шаг")
axs[1].set_ylabel("Число машин")
axs[1].set_ylim(0, 10)
axs[1].set_title("Динамика: число 'биомашин'")
axs[2].set_xlabel("Лаг")
axs[2].set_ylabel("Автокорреляция")
axs[2].set_title("Автокорреляция углового профиля")
def update(frame):
nonlocal seq
if frame != 0:
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
# Обновление графиков
line1.set_data(range(len(torsion_profile)), torsion_profile)
for start, end, val in runs:
runs_patch.set_xy([(start, -200), (end, -200), (end, 200), (start, 200)])
line2.set_data(range(len(stat_bist_counts)), stat_bist_counts)
for i, b in enumerate(acorr[:6]):
bar[i].set_height(b)
axs[0].set_title(f"Шаг {frame}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}")
axs[2].text(0.70, 0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
return line1, runs_patch, line2, bar
ani = FuncAnimation(fig, update, frames=range(steps), blit=True, interval=100)
# Показ анимации в Streamlit
plot_placeholder.pyplot(fig)
|