File size: 5,355 Bytes
161a31c 3ffebe8 599d710 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c cab60db aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 411f3df aaacbbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
import time
from scipy.stats import entropy as scipy_entropy
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 10000
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
lags_shown = 6
st.set_page_config(layout="wide")
st.title("🌌 Визуализация торсионных биомашин")
# --- ИНТЕРФЕЙС ---
col1, col2, col3 = st.columns([1,1,2])
with col1:
if 'running' not in st.session_state:
st.session_state.running = False
if st.button("▶️ Старт / ⏸ Стоп"):
st.session_state.running = not st.session_state.running
with col2:
if st.button("🔄 Сброс"):
st.session_state.running = False
st.session_state.step = 0
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
with col3:
speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)
# --- ИНИЦИАЛИЗАЦИЯ ---
if 'seq' not in st.session_state:
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
if 'step' not in st.session_state:
st.session_state.step = 0
if 'stat_bist_counts' not in st.session_state:
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
# --- ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10] / norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
# --- ВИЗУАЛИЗАЦИЯ ---
plot_area = st.empty()
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.5)
# --- ЦИКЛ ВИЗУАЛИЗАЦИИ ---
while st.session_state.running:
st.session_state.seq = bio_mutate(st.session_state.seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
ent = compute_entropy(torsion_profile)
acorr = compute_autocorr(torsion_profile)
st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)]
st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent]
st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr]
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[0].plot(torsion_profile, color='royalblue')
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}")
axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_title("Число 'биомашин'")
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal')
axs[2].set_title("Автокорреляция углового профиля")
plot_area.pyplot(fig, clear_figure=True)
st.session_state.step += 1
time.sleep(speed / 1000.0)
|