File size: 4,157 Bytes
cab60db
3ffebe8
599d710
3ffebe8
 
ce76895
cab60db
599d710
 
70faa9c
3ffebe8
 
 
 
cab60db
70faa9c
3ffebe8
 
 
 
 
 
 
 
 
 
 
 
 
cab60db
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
 
f1e60b9
3ffebe8
 
 
396e0c2
 
f1e60b9
3ffebe8
 
 
 
f1e60b9
3ffebe8
 
 
599d710
ce76895
3ffebe8
 
599d710
cab60db
396e0c2
 
 
 
30998ff
396e0c2
cab60db
ce76895
 
 
 
 
70faa9c
 
 
 
ce76895
599d710
 
70faa9c
3ffebe8
 
 
ce76895
70faa9c
 
 
 
 
 
0bc0cd3
 
70faa9c
0bc0cd3
 
 
 
 
 
f1e60b9
599d710
 
 
 
70faa9c
 
599d710
 
 
396e0c2
599d710
 
 
30998ff
599d710
 
 
30998ff
599d710
 
30998ff
70faa9c
599d710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time

st.set_page_config(layout="wide")

# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

# --- ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10]/norm

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")

plot_placeholder = st.empty()

if start:
    seq = ''.join(random.choices(bases, k=seqlen))
    stat_bist_counts = []
    stat_entropy = []

    step = 0
    while True:
        if stop:
            st.warning("⏹️ Эфир остановлен пользователем.")
            break

        if step != 0:
            seq = bio_mutate(seq)

        torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
        runs = find_local_min_runs(torsion_profile, min_run, max_run)
        stat_bist_counts.append(len(runs))
        ent = compute_entropy(torsion_profile)
        stat_entropy.append(ent)
        acorr = compute_autocorr(torsion_profile)

        fig, axs = plt.subplots(3, 1, figsize=(10, 8))
        plt.subplots_adjust(hspace=0.45)

        axs[0].plot(torsion_profile, color='royalblue')
        for start_, end_, val in runs:
            axs[0].axvspan(start_, end_, color="red", alpha=0.3)
        axs[0].set_ylim(-200, 200)
        axs[0].set_title(f"Шаг {step}: {seq}")
        axs[0].set_ylabel("Торсионный угол")

        axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
        axs[1].set_ylabel("Биомашины")
        axs[1].set_title("Количество машин")

        axs[2].bar(np.arange(6), acorr[:6], color='teal')
        axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
        axs[2].set_xlabel("Лаг")

        plot_placeholder.pyplot(fig)
        plt.close(fig)

        step += 1
        time.sleep(0.3)