File size: 5,357 Bytes
3ffebe8
599d710
3ffebe8
6c5a763
ec3010d
ab731e4
ec3010d
 
 
 
6c5a763
3ffebe8
cab60db
6a1b049
 
 
 
 
 
 
 
 
 
 
 
 
6c5a763
ec3010d
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
ec3010d
f1e60b9
3ffebe8
 
ec3010d
396e0c2
 
f1e60b9
3ffebe8
 
 
ec3010d
f1e60b9
3ffebe8
 
 
ec3010d
 
 
3ffebe8
 
ec3010d
 
 
cab60db
6c5a763
 
 
 
ec3010d
 
6c5a763
 
 
 
 
 
ec3010d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ee2ab
1b826be
 
 
 
 
 
 
 
 
 
61ee2ab
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import streamlit as st

# --- НАСТРОЙКИ ---
seqlen = st.slider("Длина последовательности", 10, 100, 60)
steps = st.slider("Количество шагов", 10, 200, 120)
min_run, max_run = st.slider("Длина машин", 1, 10, 1), st.slider("Максимальная длина машин", 2, 10, 2)
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

# --- Более биологичные мутации ---
def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end]
            subseq = subseq[::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    if len(seq) > seqlen:
        seq = seq[:seqlen]
    return seq

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result)!=0 else 1
    return result[:10]/norm  # только лаги 0..9

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

# --- Начальная цепь ---
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []

fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.45)
lags_shown = 6

def draw_world(seq, axs, step, cnt_hist, ent_hist, ac_hist):
    torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
    runs = find_local_min_runs(torsion_profile, min_run, max_run)
    axs[0].cla()
    axs[1].cla()
    axs[2].cla()

    axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
    for start, end, val in runs:
        axs[0].axvspan(start, end, color="red", alpha=0.3)
        axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
    axs[0].set_ylim(-200, 200)
    axs[0].set_xlabel("Позиция")
    axs[0].set_ylabel("Торсионный угол (град.)")
    axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}")
    axs[0].legend()

    axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
    axs[1].set_xlabel("Шаг")
    axs[1].set_ylabel("Число машин")
    axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
    axs[1].set_title("Динамика: число 'биомашин'")

    axs[2].bar(np.arange(lags_shown), ac_hist[-1][:lags_shown], color='teal', alpha=0.7)
    axs[2].set_xlabel("Лаг")
    axs[2].set_ylabel("Автокорреляция")
    axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
    axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)

# --- Запуск анимации в Streamlit ---
if st.button("Начать анимацию"):
    chart_placeholder = st.empty()  # создаем пустое место для графиков
    for step in range(steps):
        seq = bio_mutate(seq)
        torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
        runs = find_local_min_runs(torsion_profile, min_run, max_run)
        stat_bist_counts.append(len(runs))
        ent = compute_entropy(torsion_profile)
        stat_entropy.append(ent)
        acorr = compute_autocorr(torsion_profile)
        stat_autocorr.append(acorr)
        draw_world(seq, axs, step, stat_bist_counts, stat_entropy, stat_autocorr)
        
        chart_placeholder.pyplot(fig)  # обновляем график
        # После каждого шага Streamlit перерисует график