File size: 5,357 Bytes
3ffebe8 599d710 3ffebe8 6c5a763 ec3010d ab731e4 ec3010d 6c5a763 3ffebe8 cab60db 6a1b049 6c5a763 ec3010d 3ffebe8 f1e60b9 3ffebe8 ec3010d f1e60b9 3ffebe8 ec3010d 396e0c2 f1e60b9 3ffebe8 ec3010d f1e60b9 3ffebe8 ec3010d 3ffebe8 ec3010d cab60db 6c5a763 ec3010d 6c5a763 ec3010d 61ee2ab 1b826be 61ee2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import streamlit as st
# --- НАСТРОЙКИ ---
seqlen = st.slider("Длина последовательности", 10, 100, 60)
steps = st.slider("Количество шагов", 10, 200, 120)
min_run, max_run = st.slider("Длина машин", 1, 10, 1), st.slider("Максимальная длина машин", 2, 10, 2)
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
# --- Более биологичные мутации ---
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result)!=0 else 1
return result[:10]/norm # только лаги 0..9
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- Начальная цепь ---
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.45)
lags_shown = 6
def draw_world(seq, axs, step, cnt_hist, ent_hist, ac_hist):
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
axs[0].set_ylim(-200, 200)
axs[0].set_xlabel("Позиция")
axs[0].set_ylabel("Торсионный угол (град.)")
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}")
axs[0].legend()
axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
axs[1].set_xlabel("Шаг")
axs[1].set_ylabel("Число машин")
axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
axs[1].set_title("Динамика: число 'биомашин'")
axs[2].bar(np.arange(lags_shown), ac_hist[-1][:lags_shown], color='teal', alpha=0.7)
axs[2].set_xlabel("Лаг")
axs[2].set_ylabel("Автокорреляция")
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)
# --- Запуск анимации в Streamlit ---
if st.button("Начать анимацию"):
chart_placeholder = st.empty() # создаем пустое место для графиков
for step in range(steps):
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
stat_autocorr.append(acorr)
draw_world(seq, axs, step, stat_bist_counts, stat_entropy, stat_autocorr)
chart_placeholder.pyplot(fig) # обновляем график
# После каждого шага Streamlit перерисует график
|