File size: 6,044 Bytes
ffb571b
e29f507
14aa24c
d179496
4504964
ffb571b
e29f507
 
 
 
 
 
 
 
 
 
 
ec011c8
e29f507
 
14aa24c
ec011c8
ffb571b
e29f507
14aa24c
4504964
ffb571b
 
5b0e9a8
 
 
 
 
ffb571b
5b0e9a8
ffb571b
5b0e9a8
ffb571b
5b0e9a8
e29f507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffb571b
e29f507
14aa24c
e29f507
4504964
d179496
 
 
 
 
 
850981e
d179496
14aa24c
850981e
 
ffb571b
 
 
 
 
 
850981e
e29f507
850981e
 
ffb571b
e29f507
ffb571b
4504964
 
 
 
 
 
 
ffb571b
4504964
 
e29f507
4504964
ffb571b
4504964
 
 
 
 
 
 
850981e
ffb571b
 
 
 
 
 
 
 
 
e29f507
850981e
ffb571b
 
850981e
ffb571b
 
 
 
 
 
 
 
 
 
 
5b0e9a8
ffb571b
e29f507
ffb571b
 
 
 
 
 
 
 
 
 
 
 
e29f507
ffb571b
 
 
 
 
 
e29f507
 
 
 
 
 
 
4504964
ffb571b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import requests
from transformers import pipeline
from langdetect import detect
import pandas as pd
import textstat
import matplotlib.pyplot as plt
import os

HF_TOKEN = os.getenv("HF_TOKEN")


# Fonction pour appeler l'API Mistral-7B
def call_mistral_api(prompt, hf_token=HF_TOKEN):
    API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
    headers = {"Authorization": f"Bearer {hf_token}"}
    payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
    response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
    response.raise_for_status()
    return response.json()[0]["generated_text"]


# Chargement du modèle de sentiment
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")

# Modèles de traduction
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")

# Fonction pour suggérer le meilleur modèle
def suggest_model(text):
    word_count = len(text.split())
    if word_count < 50:
        return "Rapide"
    elif word_count <= 200:
        return "Équilibré"
    else:
        return "Précis"

# Fonction pour générer un graphique de clarté
def plot_clarity(clarity_scores):
    plt.figure(figsize=(8, 4))
    plt.plot(range(1, len(clarity_scores) + 1), clarity_scores, marker='o')
    plt.title("Évolution du Score de Clarté")
    plt.xlabel("Numéro d'analyse")
    plt.ylabel("Score de Clarté")
    plt.ylim(0, 100)
    plt.grid(True)
    return plt.gcf()

# Fonction pour reset le graphique
def reset_clarity_graph():
    return [], plot_clarity([])

# Fonction d'analyse
def full_analysis(text, mode, detail_mode, count, history, clarity_scores):
    if not text:
        return "Entrez une phrase.", "", "", 0, history, clarity_scores, None, None

    try:
        lang = detect(text)
    except:
        lang = "unknown"

    if lang != "en":
        text = translator_to_en(text, max_length=512)[0]['translation_text']

    result = classifier(text)[0]
    sentiment_output = f"Sentiment : {result['label']} (Score: {result['score']:.2f})"

    prompt = f"""
    You are a financial analyst AI.
    Based on the following financial news: \"{text}\",
    explain clearly why the sentiment is {result['label'].lower()}.
    {"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
    """

    explanation_en = call_mistral_api(prompt)
    explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']

    clarity_score = textstat.flesch_reading_ease(explanation_en)
    clarity_scores.append(clarity_score)

    count += 1
    history.append({
        "Texte": text,
        "Sentiment": result['label'],
        "Score": f"{result['score']:.2f}",
        "Explication_EN": explanation_en,
        "Explication_FR": explanation_fr,
        "Clarté": f"{clarity_score:.1f}"
    })

    return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history, clarity_scores, plot_clarity(clarity_scores)

# Fonction pour télécharger historique CSV
def download_history(history):
    if not history:
        return None
    df = pd.DataFrame(history)
    file_path = "/tmp/analysis_history.csv"
    df.to_csv(file_path, index=False)
    return file_path

# Interface Gradio
def launch_app():
    with gr.Blocks(theme=gr.themes.Base(), css="body {background-color: #0D1117; color: white;} .gr-button {background-color: #161B22; border: 1px solid #30363D;}") as iface:

        gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
        gr.Markdown("Entrez une actualité financière. L'IA analyse et explique en anglais/français. Choisissez votre mode d'explication.")

        count = gr.State(0)
        history = gr.State([])
        clarity_scores = gr.State([])

        with gr.Row():
            input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser")

        with gr.Row():
            mode_selector = gr.Dropdown(
                choices=["Rapide", "Équilibré", "Précis"],
                value="Équilibré",
                label="Mode recommandé selon la taille"
            )
            detail_mode_selector = gr.Dropdown(
                choices=["Normal", "Expert"],
                value="Normal",
                label="Niveau de détail"
            )

        analyze_btn = gr.Button("Analyser")
        reset_graph_btn = gr.Button("Reset Graphique")
        download_btn = gr.Button("Télécharger CSV")

        with gr.Row():
            sentiment_output = gr.Textbox(label="Résultat du Sentiment")

        with gr.Row():
            with gr.Column():
                explanation_output_en = gr.Textbox(label="Explication en Anglais")
            with gr.Column():
                explanation_output_fr = gr.Textbox(label="Explication en Français")

        clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)")
        clarity_plot = gr.Plot(label="Graphique des Scores de Clarté")
        download_file = gr.File(label="Fichier CSV")

        input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])

        analyze_btn.click(
            full_analysis,
            inputs=[input_text, mode_selector, detail_mode_selector, count, history, clarity_scores],
            outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history, clarity_scores, clarity_plot]
        )

        reset_graph_btn.click(
            reset_clarity_graph,
            outputs=[clarity_scores, clarity_plot]
        )

        download_btn.click(
            download_history,
            inputs=[history],
            outputs=[download_file]
        )

    iface.launch()

if __name__ == "__main__":
    launch_app()