Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,31 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
3 |
from langdetect import detect
|
4 |
import pandas as pd
|
5 |
import textstat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Chargement du modèle de sentiment
|
8 |
-
classifier = pipeline(
|
9 |
-
"sentiment-analysis",
|
10 |
-
model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
11 |
-
)
|
12 |
|
13 |
# Modèles de traduction
|
14 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
15 |
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
16 |
|
17 |
-
# Modèle explicatif CPU-friendly
|
18 |
-
explainer = pipeline("text2text-generation", model="facebook/blenderbot-1B-distill")
|
19 |
-
|
20 |
# Fonction pour suggérer le meilleur modèle
|
21 |
def suggest_model(text):
|
22 |
word_count = len(text.split())
|
@@ -27,10 +36,25 @@ def suggest_model(text):
|
|
27 |
else:
|
28 |
return "Précis"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Fonction d'analyse
|
31 |
-
def full_analysis(text, mode, detail_mode, count, history):
|
32 |
if not text:
|
33 |
-
return "Entrez une phrase.", "", "", 0, history, None
|
34 |
|
35 |
try:
|
36 |
lang = detect(text)
|
@@ -50,10 +74,11 @@ def full_analysis(text, mode, detail_mode, count, history):
|
|
50 |
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
|
51 |
"""
|
52 |
|
53 |
-
explanation_en =
|
54 |
explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
|
55 |
|
56 |
clarity_score = textstat.flesch_reading_ease(explanation_en)
|
|
|
57 |
|
58 |
count += 1
|
59 |
history.append({
|
@@ -65,7 +90,7 @@ def full_analysis(text, mode, detail_mode, count, history):
|
|
65 |
"Clarté": f"{clarity_score:.1f}"
|
66 |
})
|
67 |
|
68 |
-
return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history,
|
69 |
|
70 |
# Fonction pour télécharger historique CSV
|
71 |
def download_history(history):
|
@@ -85,6 +110,7 @@ def launch_app():
|
|
85 |
|
86 |
count = gr.State(0)
|
87 |
history = gr.State([])
|
|
|
88 |
|
89 |
with gr.Row():
|
90 |
input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser")
|
@@ -102,6 +128,7 @@ def launch_app():
|
|
102 |
)
|
103 |
|
104 |
analyze_btn = gr.Button("Analyser")
|
|
|
105 |
download_btn = gr.Button("Télécharger CSV")
|
106 |
|
107 |
with gr.Row():
|
@@ -114,14 +141,20 @@ def launch_app():
|
|
114 |
explanation_output_fr = gr.Textbox(label="Explication en Français")
|
115 |
|
116 |
clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)")
|
|
|
117 |
download_file = gr.File(label="Fichier CSV")
|
118 |
|
119 |
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
|
120 |
|
121 |
analyze_btn.click(
|
122 |
full_analysis,
|
123 |
-
inputs=[input_text, mode_selector, detail_mode_selector, count, history],
|
124 |
-
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history,
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
|
127 |
download_btn.click(
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
from transformers import pipeline
|
4 |
from langdetect import detect
|
5 |
import pandas as pd
|
6 |
import textstat
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import os
|
9 |
+
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
+
|
12 |
+
|
13 |
+
# Fonction pour appeler l'API Mistral-7B
|
14 |
+
def call_mistral_api(prompt, hf_token=HF_TOKEN):
|
15 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
16 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
17 |
+
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
|
18 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
19 |
+
response.raise_for_status()
|
20 |
+
return response.json()[0]["generated_text"]
|
21 |
|
22 |
# Chargement du modèle de sentiment
|
23 |
+
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
|
|
|
|
|
|
24 |
|
25 |
# Modèles de traduction
|
26 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
27 |
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
28 |
|
|
|
|
|
|
|
29 |
# Fonction pour suggérer le meilleur modèle
|
30 |
def suggest_model(text):
|
31 |
word_count = len(text.split())
|
|
|
36 |
else:
|
37 |
return "Précis"
|
38 |
|
39 |
+
# Fonction pour générer un graphique de clarté
|
40 |
+
def plot_clarity(clarity_scores):
|
41 |
+
plt.figure(figsize=(8, 4))
|
42 |
+
plt.plot(range(1, len(clarity_scores) + 1), clarity_scores, marker='o')
|
43 |
+
plt.title("Évolution du Score de Clarté")
|
44 |
+
plt.xlabel("Numéro d'analyse")
|
45 |
+
plt.ylabel("Score de Clarté")
|
46 |
+
plt.ylim(0, 100)
|
47 |
+
plt.grid(True)
|
48 |
+
return plt.gcf()
|
49 |
+
|
50 |
+
# Fonction pour reset le graphique
|
51 |
+
def reset_clarity_graph():
|
52 |
+
return [], plot_clarity([])
|
53 |
+
|
54 |
# Fonction d'analyse
|
55 |
+
def full_analysis(text, mode, detail_mode, count, history, clarity_scores):
|
56 |
if not text:
|
57 |
+
return "Entrez une phrase.", "", "", 0, history, clarity_scores, None, None
|
58 |
|
59 |
try:
|
60 |
lang = detect(text)
|
|
|
74 |
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
|
75 |
"""
|
76 |
|
77 |
+
explanation_en = call_mistral_api(prompt)
|
78 |
explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
|
79 |
|
80 |
clarity_score = textstat.flesch_reading_ease(explanation_en)
|
81 |
+
clarity_scores.append(clarity_score)
|
82 |
|
83 |
count += 1
|
84 |
history.append({
|
|
|
90 |
"Clarté": f"{clarity_score:.1f}"
|
91 |
})
|
92 |
|
93 |
+
return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history, clarity_scores, plot_clarity(clarity_scores)
|
94 |
|
95 |
# Fonction pour télécharger historique CSV
|
96 |
def download_history(history):
|
|
|
110 |
|
111 |
count = gr.State(0)
|
112 |
history = gr.State([])
|
113 |
+
clarity_scores = gr.State([])
|
114 |
|
115 |
with gr.Row():
|
116 |
input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser")
|
|
|
128 |
)
|
129 |
|
130 |
analyze_btn = gr.Button("Analyser")
|
131 |
+
reset_graph_btn = gr.Button("Reset Graphique")
|
132 |
download_btn = gr.Button("Télécharger CSV")
|
133 |
|
134 |
with gr.Row():
|
|
|
141 |
explanation_output_fr = gr.Textbox(label="Explication en Français")
|
142 |
|
143 |
clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)")
|
144 |
+
clarity_plot = gr.Plot(label="Graphique des Scores de Clarté")
|
145 |
download_file = gr.File(label="Fichier CSV")
|
146 |
|
147 |
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
|
148 |
|
149 |
analyze_btn.click(
|
150 |
full_analysis,
|
151 |
+
inputs=[input_text, mode_selector, detail_mode_selector, count, history, clarity_scores],
|
152 |
+
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history, clarity_scores, clarity_plot]
|
153 |
+
)
|
154 |
+
|
155 |
+
reset_graph_btn.click(
|
156 |
+
reset_clarity_graph,
|
157 |
+
outputs=[clarity_scores, clarity_plot]
|
158 |
)
|
159 |
|
160 |
download_btn.click(
|