File size: 1,477 Bytes
151e950 ea69f59 151e950 ea69f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
title: NeoGuardianAI
emoji: 🛡️
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 3.50.2
app_file: app.py
pinned: false
license: mit
---
# NeoGuardianAI - URL Phishing Detection
This Space provides a web interface for detecting phishing URLs using a machine learning model with an anime-inspired tech guardian theme.
## Model Performance
- Accuracy: 96.31%
- Precision: 96.00%
- Recall: 96.66%
- F1 Score: 96.33%
## How it works
The model was trained on the [pirocheto/phishing-url](https://huggingface.co/datasets/pirocheto/phishing-url) dataset from Hugging Face.
It extracts various features from the URL and uses a XGBoost model to classify it as legitimate or phishing.
## Usage
Simply enter a URL in the input box and click "Check URL" to see if it's safe or potentially malicious.
## Model Repository
The model is available at [https://huggingface.co/Devishetty100/neoguardianai](https://huggingface.co/Devishetty100/neoguardianai)
## API Usage
You can also use this model via the Hugging Face Inference API:
```python
import requests
API_URL = "https://api-inference.huggingface.co/models/Devishetty100/neoguardianai"
headers = {"Authorization": "Bearer YOUR_API_TOKEN"}
def query(url):
payload = {"inputs": url}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Example
result = query("https://example.com")
print(result)
```
|