Devishetty100 commited on
Commit
ea69f59
·
verified ·
1 Parent(s): 0e3c43f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +44 -12
README.md CHANGED
@@ -1,12 +1,44 @@
1
- ---
2
- title: Neoguardianai Space
3
- emoji: 🐨
4
- colorFrom: pink
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.25.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NeoGuardianAI - URL Phishing Detection
2
+
3
+ This Space provides a web interface for detecting phishing URLs using a machine learning model.
4
+
5
+ ## Model Performance
6
+
7
+ - Accuracy: 96.31%
8
+ - Precision: 96.00%
9
+ - Recall: 96.66%
10
+ - F1 Score: 96.33%
11
+
12
+ ## How it works
13
+
14
+ The model was trained on the [pirocheto/phishing-url](https://huggingface.co/datasets/pirocheto/phishing-url) dataset from Hugging Face.
15
+
16
+ It extracts various features from the URL and uses a XGBoost model to classify it as legitimate or phishing.
17
+
18
+ ## Usage
19
+
20
+ Simply enter a URL in the input box and click "Check URL" to see if it's safe or potentially malicious.
21
+
22
+ ## Model Repository
23
+
24
+ The model is available at [https://huggingface.co/Devishetty100/neoguardianai](https://huggingface.co/Devishetty100/neoguardianai)
25
+
26
+ ## API Usage
27
+
28
+ You can also use this model via the Hugging Face Inference API:
29
+
30
+ ```python
31
+ import requests
32
+
33
+ API_URL = "https://api-inference.huggingface.co/models/Devishetty100/neoguardianai"
34
+ headers = {"Authorization": "Bearer YOUR_API_TOKEN"}
35
+
36
+ def query(url):
37
+ payload = {"inputs": url}
38
+ response = requests.post(API_URL, headers=headers, json=payload)
39
+ return response.json()
40
+
41
+ # Example
42
+ result = query("https://example.com")
43
+ print(result)
44
+ ```