meisaicheck-api / routes /predict.py
vumichien's picture
update confirm
f323c55
import os
import time
import shutil
from pathlib import Path
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends, Body
from fastapi.responses import FileResponse
from auth import get_current_user
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
from data_lib.input_name_data import InputNameData
from data_lib.base_name_data import COL_NAME_SENTENCE
from mapping_lib.subject_mapper import SubjectMapper
from mapping_lib.name_mapper import NameMapper
from config import UPLOAD_DIR, OUTPUT_DIR
from models import (
EmbeddingRequest,
PredictRawRequest,
PredictRawResponse,
PredictRecord,
PredictResult,
)
import pandas as pd
import traceback
router = APIRouter()
@router.post("/predict")
async def predict(
current_user=Depends(get_current_user),
file: UploadFile = File(...),
sentence_service: SentenceTransformerService = Depends(lambda: sentence_transformer_service)
):
"""
Process an input CSV file and return standardized names (requires authentication)
"""
if not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Only CSV files are supported")
# Save uploaded file
timestamp = int(time.time())
input_file_path = os.path.join(UPLOAD_DIR, f"input_{timestamp}_{current_user.username}.csv")
output_file_path = os.path.join(OUTPUT_DIR, f"output_{timestamp}_{current_user.username}.csv")
try:
with open(input_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
finally:
file.file.close()
try:
# Process input data
start_time = time.time()
try:
inputData = InputNameData()
inputData.load_data_from_csv(input_file_path)
except Exception as e:
print(f"Error processing load data: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
subject_mapper = SubjectMapper(
sentence_transformer_helper=sentence_service.sentenceTransformerHelper,
dic_subject_map=sentence_service.dic_standard_subject,
similarity_threshold=0.9,
)
dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
except Exception as e:
print(f"Error processing SubjectMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
inputData.dic_standard_subject = dic_subject_map
inputData.process_data()
except Exception as e:
print(f"Error processing inputData process_data: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Map standard names
try:
nameMapper = NameMapper(
sentence_service.sentenceTransformerHelper,
sentence_service.standardNameMapData,
top_count=3
)
df_predicted = nameMapper.predict(inputData)
except Exception as e:
print(f"Error mapping standard names: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
# Create output dataframe and save to CSV
# column_to_keep = ['ファイル名', 'シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考']
column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
output_df = inputData.dataframe[column_to_keep].copy()
output_df.reset_index(drop=False, inplace=True)
output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]
# Save with utf_8_sig encoding for Japanese Excel compatibility
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
return FileResponse(
path=output_file_path,
filename=f"output_{Path(file.filename).stem}.csv",
media_type="text/csv",
headers={
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
"Content-Type": "application/x-www-form-urlencoded",
},
)
except Exception as e:
print(f"Error processing file: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/embeddings")
async def create_embeddings(
request: EmbeddingRequest,
current_user=Depends(get_current_user),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Create embeddings for a list of input sentences (requires authentication)
"""
try:
start_time = time.time()
embeddings = sentence_service.sentenceTransformerHelper.create_embeddings(
request.sentences
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
# Convert numpy array to list for JSON serialization
embeddings_list = embeddings.tolist()
return {"embeddings": embeddings_list}
except Exception as e:
print(f"Error creating embeddings: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/predict-raw", response_model=PredictRawResponse)
async def predict_raw(
request: PredictRawRequest,
current_user=Depends(get_current_user),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Process raw input records and return standardized names (requires authentication)
"""
try:
# Convert input records to DataFrame
records_dict = {
"科目": [],
"中科目": [],
"分類": [],
"名称": [],
"摘要": [],
"備考": [],
"シート名": [], # Required by BaseNameData but not used
"行": [], # Required by BaseNameData but not used
}
for record in request.records:
records_dict["科目"].append(record.subject)
records_dict["中科目"].append(record.sub_subject)
records_dict["分類"].append(record.name_category)
records_dict["名称"].append(record.name)
records_dict["摘要"].append(record.abstract or "")
records_dict["備考"].append(record.memo or "")
records_dict["シート名"].append("") # Placeholder
records_dict["行"].append("") # Placeholder
df = pd.DataFrame(records_dict)
# Process input data
try:
inputData = InputNameData(sentence_service.dic_standard_subject)
# Use _add_raw_data instead of direct assignment
inputData._add_raw_data(df)
except Exception as e:
print(f"Error processing input data: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
subject_mapper = SubjectMapper(
sentence_transformer_helper=sentence_service.sentenceTransformerHelper,
dic_subject_map=sentence_service.dic_standard_subject,
similarity_threshold=0.9,
)
dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
except Exception as e:
print(f"Error processing SubjectMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
inputData.dic_standard_subject = dic_subject_map
inputData.process_data()
except Exception as e:
print(f"Error processing inputData process_data: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Map standard names
try:
nameMapper = NameMapper(
sentence_service.sentenceTransformerHelper,
sentence_service.standardNameMapData,
top_count=3
)
df_predicted = nameMapper.predict(inputData)
except Exception as e:
print(f"Error mapping standard names: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
important_columns = ['確定', '標準科目', '標準項目名', '基準名称類似度']
for column in important_columns:
if column not in df_predicted.columns:
if column != '基準名称類似度':
df_predicted[column] = ""
inputData.dataframe[column] = ""
else:
df_predicted[column] = 0
inputData.dataframe[column] = 0
column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
output_df = inputData.dataframe[column_to_keep].copy()
output_df.reset_index(drop=False, inplace=True)
output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]
# Convert results to response format
results = []
for _, row in output_df.iterrows():
result = PredictResult(
subject=row["科目"],
sub_subject=row["中科目"],
name_category=row["分類"],
name=row["名称"],
abstract=row["摘要"],
memo=row["備考"],
confirmed=row["確定"],
standard_subject=row["出力_科目"],
standard_name=row["出力_項目名"],
similarity_score=float(row["出力_確率度"]),
)
results.append(result)
return PredictRawResponse(results=results)
except Exception as e:
print(f"Error processing records: {e}")
raise HTTPException(status_code=500, detail=str(e))