File size: 10,382 Bytes
b77c0a2
 
 
 
8600f2c
b77c0a2
 
 
 
840b33e
892f887
887cb19
b77c0a2
8600f2c
 
 
 
 
 
 
 
632ec54
b77c0a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b3214
887cb19
892f887
887cb19
892f887
632ec54
892f887
 
632ec54
 
 
 
 
892f887
632ec54
 
 
 
892f887
 
887cb19
632ec54
887cb19
b77c0a2
887cb19
 
 
 
 
 
 
 
 
632ec54
887cb19
b77c0a2
 
ced3dcd
632ec54
b77c0a2
 
887cb19
 
 
b77c0a2
 
 
b6b3214
 
 
b77c0a2
 
 
 
 
 
 
 
 
 
 
 
 
8600f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
892f887
8600f2c
 
 
892f887
 
 
8600f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeac4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8600f2c
 
 
 
 
aeac4b2
8600f2c
 
 
 
aeac4b2
8600f2c
aeac4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8600f2c
 
 
aeac4b2
8600f2c
aeac4b2
 
 
 
 
 
f323c55
aeac4b2
 
 
8600f2c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import time
import shutil
from pathlib import Path
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends, Body
from fastapi.responses import FileResponse
from auth import get_current_user
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
from data_lib.input_name_data import InputNameData
from data_lib.base_name_data import COL_NAME_SENTENCE
from mapping_lib.subject_mapper import SubjectMapper
from mapping_lib.name_mapper import NameMapper
from config import UPLOAD_DIR, OUTPUT_DIR
from models import (
    EmbeddingRequest,
    PredictRawRequest,
    PredictRawResponse,
    PredictRecord,
    PredictResult,
)
import pandas as pd
import traceback

router = APIRouter()

@router.post("/predict")
async def predict(
    current_user=Depends(get_current_user),
    file: UploadFile = File(...),
    sentence_service: SentenceTransformerService = Depends(lambda: sentence_transformer_service)
):
    """
    Process an input CSV file and return standardized names (requires authentication)
    """
    if not file.filename.endswith(".csv"):
        raise HTTPException(status_code=400, detail="Only CSV files are supported")

    # Save uploaded file
    timestamp = int(time.time())
    input_file_path = os.path.join(UPLOAD_DIR, f"input_{timestamp}_{current_user.username}.csv")
    output_file_path = os.path.join(OUTPUT_DIR, f"output_{timestamp}_{current_user.username}.csv")

    try:
        with open(input_file_path, "wb") as buffer:
            shutil.copyfileobj(file.file, buffer)
    finally:
        file.file.close()

    try:
        # Process input data
        start_time = time.time()
        try:
            inputData = InputNameData()
            inputData.load_data_from_csv(input_file_path)
        except Exception as e:
            print(f"Error processing load data: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        try:
            subject_mapper = SubjectMapper(
                sentence_transformer_helper=sentence_service.sentenceTransformerHelper, 
                dic_subject_map=sentence_service.dic_standard_subject,
                similarity_threshold=0.9,
            )
            dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
        except Exception as e:
            print(f"Error processing SubjectMapper: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        try:
            inputData.dic_standard_subject = dic_subject_map
            inputData.process_data()
        except Exception as e:
            print(f"Error processing inputData process_data: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        # Map standard names
        try:
            nameMapper = NameMapper(
                sentence_service.sentenceTransformerHelper,
                sentence_service.standardNameMapData,
                top_count=3
            )
            df_predicted = nameMapper.predict(inputData)
        except Exception as e:
            print(f"Error mapping standard names: {e}")
            traceback.print_exc()
            raise HTTPException(status_code=500, detail=str(e))

        # Create output dataframe and save to CSV
        # column_to_keep = ['ファイル名', 'シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考']
        column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
        output_df = inputData.dataframe[column_to_keep].copy()
        output_df.reset_index(drop=False, inplace=True)
        output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
        output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
        output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]

        # Save with utf_8_sig encoding for Japanese Excel compatibility
        output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
        end_time = time.time()
        execution_time = end_time - start_time
        print(f"Execution time: {execution_time} seconds")
        return FileResponse(
            path=output_file_path,
            filename=f"output_{Path(file.filename).stem}.csv",
            media_type="text/csv",
            headers={
                "Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
                "Content-Type": "application/x-www-form-urlencoded",
            },
        )

    except Exception as e:
        print(f"Error processing file: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/embeddings")
async def create_embeddings(
    request: EmbeddingRequest,
    current_user=Depends(get_current_user),
    sentence_service: SentenceTransformerService = Depends(
        lambda: sentence_transformer_service
    ),
):
    """
    Create embeddings for a list of input sentences (requires authentication)
    """
    try:
        start_time = time.time()
        embeddings = sentence_service.sentenceTransformerHelper.create_embeddings(
            request.sentences
        )
        end_time = time.time()
        execution_time = end_time - start_time
        print(f"Execution time: {execution_time} seconds")
        # Convert numpy array to list for JSON serialization
        embeddings_list = embeddings.tolist()
        return {"embeddings": embeddings_list}
    except Exception as e:
        print(f"Error creating embeddings: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@router.post("/predict-raw", response_model=PredictRawResponse)
async def predict_raw(
    request: PredictRawRequest,
    current_user=Depends(get_current_user),
    sentence_service: SentenceTransformerService = Depends(
        lambda: sentence_transformer_service
    ),
):
    """
    Process raw input records and return standardized names (requires authentication)
    """
    try:
        # Convert input records to DataFrame
        records_dict = {
            "科目": [],
            "中科目": [],
            "分類": [],
            "名称": [],
            "摘要": [],
            "備考": [],
            "シート名": [],  # Required by BaseNameData but not used
            "行": [],  # Required by BaseNameData but not used
        }

        for record in request.records:
            records_dict["科目"].append(record.subject)
            records_dict["中科目"].append(record.sub_subject)
            records_dict["分類"].append(record.name_category)
            records_dict["名称"].append(record.name)
            records_dict["摘要"].append(record.abstract or "")
            records_dict["備考"].append(record.memo or "")
            records_dict["シート名"].append("")  # Placeholder
            records_dict["行"].append("")  # Placeholder

        df = pd.DataFrame(records_dict)

        # Process input data
        try:
            inputData = InputNameData(sentence_service.dic_standard_subject)
            # Use _add_raw_data instead of direct assignment
            inputData._add_raw_data(df)
        except Exception as e:
            print(f"Error processing input data: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        try:
            subject_mapper = SubjectMapper(
                sentence_transformer_helper=sentence_service.sentenceTransformerHelper, 
                dic_subject_map=sentence_service.dic_standard_subject,
                similarity_threshold=0.9,
            )
            dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
        except Exception as e:
            print(f"Error processing SubjectMapper: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        try:
            inputData.dic_standard_subject = dic_subject_map
            inputData.process_data()
        except Exception as e:
            print(f"Error processing inputData process_data: {e}")
            raise HTTPException(status_code=500, detail=str(e))
        # Map standard names
        try:
            nameMapper = NameMapper(
                sentence_service.sentenceTransformerHelper,
                sentence_service.standardNameMapData,
                top_count=3
            )
            df_predicted = nameMapper.predict(inputData)
        except Exception as e:
            print(f"Error mapping standard names: {e}")
            traceback.print_exc()
            raise HTTPException(status_code=500, detail=str(e))
        
        important_columns = ['確定', '標準科目', '標準項目名', '基準名称類似度']
        for column in important_columns:
            if column not in df_predicted.columns:
                if column != '基準名称類似度':
                    df_predicted[column] = ""
                    inputData.dataframe[column] = ""
                else:
                    df_predicted[column] = 0
                    inputData.dataframe[column] = 0

        column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
        output_df = inputData.dataframe[column_to_keep].copy()
        output_df.reset_index(drop=False, inplace=True)
        output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
        output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
        output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]

        # Convert results to response format
        results = []
        for _, row in output_df.iterrows():
            result = PredictResult(
                subject=row["科目"],
                sub_subject=row["中科目"],
                name_category=row["分類"],
                name=row["名称"],
                abstract=row["摘要"],
                memo=row["備考"],
                confirmed=row["確定"],
                standard_subject=row["出力_科目"],
                standard_name=row["出力_項目名"],
                similarity_score=float(row["出力_確率度"]),
            )
            results.append(result)

        return PredictRawResponse(results=results)

    except Exception as e:
        print(f"Error processing records: {e}")
        raise HTTPException(status_code=500, detail=str(e))