Spaces:
Running
Running
File size: 10,382 Bytes
b77c0a2 8600f2c b77c0a2 840b33e 892f887 887cb19 b77c0a2 8600f2c 632ec54 b77c0a2 b6b3214 887cb19 892f887 887cb19 892f887 632ec54 892f887 632ec54 892f887 632ec54 892f887 887cb19 632ec54 887cb19 b77c0a2 887cb19 632ec54 887cb19 b77c0a2 ced3dcd 632ec54 b77c0a2 887cb19 b77c0a2 b6b3214 b77c0a2 8600f2c 892f887 8600f2c 892f887 8600f2c aeac4b2 8600f2c aeac4b2 8600f2c aeac4b2 8600f2c aeac4b2 8600f2c aeac4b2 8600f2c aeac4b2 f323c55 aeac4b2 8600f2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import time
import shutil
from pathlib import Path
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends, Body
from fastapi.responses import FileResponse
from auth import get_current_user
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
from data_lib.input_name_data import InputNameData
from data_lib.base_name_data import COL_NAME_SENTENCE
from mapping_lib.subject_mapper import SubjectMapper
from mapping_lib.name_mapper import NameMapper
from config import UPLOAD_DIR, OUTPUT_DIR
from models import (
EmbeddingRequest,
PredictRawRequest,
PredictRawResponse,
PredictRecord,
PredictResult,
)
import pandas as pd
import traceback
router = APIRouter()
@router.post("/predict")
async def predict(
current_user=Depends(get_current_user),
file: UploadFile = File(...),
sentence_service: SentenceTransformerService = Depends(lambda: sentence_transformer_service)
):
"""
Process an input CSV file and return standardized names (requires authentication)
"""
if not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Only CSV files are supported")
# Save uploaded file
timestamp = int(time.time())
input_file_path = os.path.join(UPLOAD_DIR, f"input_{timestamp}_{current_user.username}.csv")
output_file_path = os.path.join(OUTPUT_DIR, f"output_{timestamp}_{current_user.username}.csv")
try:
with open(input_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
finally:
file.file.close()
try:
# Process input data
start_time = time.time()
try:
inputData = InputNameData()
inputData.load_data_from_csv(input_file_path)
except Exception as e:
print(f"Error processing load data: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
subject_mapper = SubjectMapper(
sentence_transformer_helper=sentence_service.sentenceTransformerHelper,
dic_subject_map=sentence_service.dic_standard_subject,
similarity_threshold=0.9,
)
dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
except Exception as e:
print(f"Error processing SubjectMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
inputData.dic_standard_subject = dic_subject_map
inputData.process_data()
except Exception as e:
print(f"Error processing inputData process_data: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Map standard names
try:
nameMapper = NameMapper(
sentence_service.sentenceTransformerHelper,
sentence_service.standardNameMapData,
top_count=3
)
df_predicted = nameMapper.predict(inputData)
except Exception as e:
print(f"Error mapping standard names: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
# Create output dataframe and save to CSV
# column_to_keep = ['ファイル名', 'シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考']
column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
output_df = inputData.dataframe[column_to_keep].copy()
output_df.reset_index(drop=False, inplace=True)
output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]
# Save with utf_8_sig encoding for Japanese Excel compatibility
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
return FileResponse(
path=output_file_path,
filename=f"output_{Path(file.filename).stem}.csv",
media_type="text/csv",
headers={
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
"Content-Type": "application/x-www-form-urlencoded",
},
)
except Exception as e:
print(f"Error processing file: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/embeddings")
async def create_embeddings(
request: EmbeddingRequest,
current_user=Depends(get_current_user),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Create embeddings for a list of input sentences (requires authentication)
"""
try:
start_time = time.time()
embeddings = sentence_service.sentenceTransformerHelper.create_embeddings(
request.sentences
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
# Convert numpy array to list for JSON serialization
embeddings_list = embeddings.tolist()
return {"embeddings": embeddings_list}
except Exception as e:
print(f"Error creating embeddings: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/predict-raw", response_model=PredictRawResponse)
async def predict_raw(
request: PredictRawRequest,
current_user=Depends(get_current_user),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Process raw input records and return standardized names (requires authentication)
"""
try:
# Convert input records to DataFrame
records_dict = {
"科目": [],
"中科目": [],
"分類": [],
"名称": [],
"摘要": [],
"備考": [],
"シート名": [], # Required by BaseNameData but not used
"行": [], # Required by BaseNameData but not used
}
for record in request.records:
records_dict["科目"].append(record.subject)
records_dict["中科目"].append(record.sub_subject)
records_dict["分類"].append(record.name_category)
records_dict["名称"].append(record.name)
records_dict["摘要"].append(record.abstract or "")
records_dict["備考"].append(record.memo or "")
records_dict["シート名"].append("") # Placeholder
records_dict["行"].append("") # Placeholder
df = pd.DataFrame(records_dict)
# Process input data
try:
inputData = InputNameData(sentence_service.dic_standard_subject)
# Use _add_raw_data instead of direct assignment
inputData._add_raw_data(df)
except Exception as e:
print(f"Error processing input data: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
subject_mapper = SubjectMapper(
sentence_transformer_helper=sentence_service.sentenceTransformerHelper,
dic_subject_map=sentence_service.dic_standard_subject,
similarity_threshold=0.9,
)
dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
except Exception as e:
print(f"Error processing SubjectMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
inputData.dic_standard_subject = dic_subject_map
inputData.process_data()
except Exception as e:
print(f"Error processing inputData process_data: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Map standard names
try:
nameMapper = NameMapper(
sentence_service.sentenceTransformerHelper,
sentence_service.standardNameMapData,
top_count=3
)
df_predicted = nameMapper.predict(inputData)
except Exception as e:
print(f"Error mapping standard names: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
important_columns = ['確定', '標準科目', '標準項目名', '基準名称類似度']
for column in important_columns:
if column not in df_predicted.columns:
if column != '基準名称類似度':
df_predicted[column] = ""
inputData.dataframe[column] = ""
else:
df_predicted[column] = 0
inputData.dataframe[column] = 0
column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
output_df = inputData.dataframe[column_to_keep].copy()
output_df.reset_index(drop=False, inplace=True)
output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]
# Convert results to response format
results = []
for _, row in output_df.iterrows():
result = PredictResult(
subject=row["科目"],
sub_subject=row["中科目"],
name_category=row["分類"],
name=row["名称"],
abstract=row["摘要"],
memo=row["備考"],
confirmed=row["確定"],
standard_subject=row["出力_科目"],
standard_name=row["出力_項目名"],
similarity_score=float(row["出力_確率度"]),
)
results.append(result)
return PredictRawResponse(results=results)
except Exception as e:
print(f"Error processing records: {e}")
raise HTTPException(status_code=500, detail=str(e))
|