AudioToAudio / app.py
DemahAlmutairi's picture
Update app.py
7396b9d verified
import gradio as gr
import whisper
from transformers import pipeline
from gtts import gTTS
import os
# Load the Whisper model from openai-whisper
whisper_model = whisper.load_model("tiny")
# Load the summarization model from Hugging Face
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def summarize_audio(audio_path):
# Step 1: Transcribe the uploaded audio file using Whisper
transcription_result = whisper_model.transcribe(audio_path)
transcription = transcription_result["text"]
# Step 2: Summarize the transcribed text using a pre-trained summarization model
summary = summarizer(transcription, max_length=50, min_length=25, do_sample=False)[0]['summary_text']
# Step 3: Convert the summarized text into speech using the Hugging Face TTS model
# Breakdown into multiple steps
tts = gTTS(text=summary, lang='en') # Generate the TTS output
tts.save("summarized_audio.wav")
# Save the TTS audio to a file (WAV format)
# Return the path to the saved summarized audio file
return "summarized_audio.wav"
# Gradio interface
interface = gr.Interface(
fn=summarize_audio, # The function to process the audio and return summarized audio
inputs=gr.Audio(type="filepath", label="Upload your audio file"), # Accept audio file uploads, file path as input
outputs=gr.File(label="Download Summarized Audio"), # Provide a downloadable summarized audio file
title="Audio Summarizer", # Interface title
description="Upload an audio file, and this tool will summarize it and generate a downloadable audio summary." , # Interface description
examples=[["Classification_and_Regression_in_Machine_Learning.mp3"]]
)
# Launch the Gradio interface
interface.launch(debug=True)