Spaces:
Runtime error
Runtime error
import gradio as gr | |
import whisper | |
from transformers import pipeline | |
from gtts import gTTS | |
import os | |
# Load the Whisper model from openai-whisper | |
whisper_model = whisper.load_model("tiny") | |
# Load the summarization model from Hugging Face | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
def summarize_audio(audio_path): | |
# Step 1: Transcribe the uploaded audio file using Whisper | |
transcription_result = whisper_model.transcribe(audio_path) | |
transcription = transcription_result["text"] | |
# Step 2: Summarize the transcribed text using a pre-trained summarization model | |
summary = summarizer(transcription, max_length=50, min_length=25, do_sample=False)[0]['summary_text'] | |
# Step 3: Convert the summarized text into speech using the Hugging Face TTS model | |
# Breakdown into multiple steps | |
tts = gTTS(text=summary, lang='en') # Generate the TTS output | |
tts.save("summarized_audio.wav") | |
# Save the TTS audio to a file (WAV format) | |
# Return the path to the saved summarized audio file | |
return "summarized_audio.wav" | |
# Gradio interface | |
interface = gr.Interface( | |
fn=summarize_audio, # The function to process the audio and return summarized audio | |
inputs=gr.Audio(type="filepath", label="Upload your audio file"), # Accept audio file uploads, file path as input | |
outputs=gr.File(label="Download Summarized Audio"), # Provide a downloadable summarized audio file | |
title="Audio Summarizer", # Interface title | |
description="Upload an audio file, and this tool will summarize it and generate a downloadable audio summary." , # Interface description | |
examples=[["Classification_and_Regression_in_Machine_Learning.mp3"]] | |
) | |
# Launch the Gradio interface | |
interface.launch(debug=True) | |