import gradio as gr import whisper from transformers import pipeline from gtts import gTTS import os # Load the Whisper model from openai-whisper whisper_model = whisper.load_model("tiny") # Load the summarization model from Hugging Face summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_audio(audio_path): # Step 1: Transcribe the uploaded audio file using Whisper transcription_result = whisper_model.transcribe(audio_path) transcription = transcription_result["text"] # Step 2: Summarize the transcribed text using a pre-trained summarization model summary = summarizer(transcription, max_length=50, min_length=25, do_sample=False)[0]['summary_text'] # Step 3: Convert the summarized text into speech using the Hugging Face TTS model # Breakdown into multiple steps tts = gTTS(text=summary, lang='en') # Generate the TTS output tts.save("summarized_audio.wav") # Save the TTS audio to a file (WAV format) # Return the path to the saved summarized audio file return "summarized_audio.wav" # Gradio interface interface = gr.Interface( fn=summarize_audio, # The function to process the audio and return summarized audio inputs=gr.Audio(type="filepath", label="Upload your audio file"), # Accept audio file uploads, file path as input outputs=gr.File(label="Download Summarized Audio"), # Provide a downloadable summarized audio file title="Audio Summarizer", # Interface title description="Upload an audio file, and this tool will summarize it and generate a downloadable audio summary." , # Interface description examples=[["Classification_and_Regression_in_Machine_Learning.mp3"]] ) # Launch the Gradio interface interface.launch(debug=True)