File size: 2,635 Bytes
b79c056
 
 
5acee80
b79c056
 
 
d6e90a6
237df5d
d6e90a6
b9c5636
d6e90a6
237df5d
 
 
d6e90a6
b9c5636
 
b79c056
b9c5636
5887026
b9c5636
5887026
 
 
b79c056
 
5887026
 
b9c5636
 
 
 
 
 
 
 
 
 
 
b79c056
 
9aa7185
 
 
 
 
 
 
b79c056
b9c5636
 
 
 
5887026
b9c5636
 
 
5887026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
import operator
import torch
import os
from transformers import BertTokenizer, BertForMaskedLM

# 使用私有模型和分詞器
model_name_or_path = "DeepLearning101/Corrector101zhTW"
auth_token = os.getenv("HF_HOME") 

# 嘗試加載模型和分詞器
try:
    tokenizer = BertTokenizer.from_pretrained(model_name_or_path, use_auth_token=auth_token)
    model = BertForMaskedLM.from_pretrained(model_name_or_path, use_auth_token=auth_token)
    model.eval()
except Exception as e:
    print(f"加載模型或分詞器失敗,錯誤信息:{e}")
    exit(1)

def ai_text(text):
    """處理輸入文本並返回修正後的文本及錯誤細節"""
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt", padding=True)
        outputs = model(**inputs)
    corrected_text, details = get_errors(text, outputs)
    return corrected_text + ' ' + str(details)

def get_errors(text, outputs):
    """識別原始文本和模型輸出之間的差異"""
    sub_details = []
    corrected_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
    for i, ori_char in enumerate(text):
        if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
            continue
        if i >= len(corrected_text):
            continue
        if ori_char != corrected_text[i]:
            sub_details.append((ori_char, corrected_text[i], i, i + 1))
    sub_details = sorted(sub_details, key=operator.itemgetter(2))
    return corrected_text, sub_details

if __name__ == '__main__':
    examples = [
        ['你究輸入利的手機門號跟生分證就可以了。'],
        ['這裡是客服中新,很高性為您服物,請問金天有什麼須要幫忙'],
        ['因為我們這邊是按天術比例計蒜給您的,其實不會有態大的穎響。也就是您用前面的資非的廢率來做計算'],
        ['我來看以下,他的時價是多少?起實您就可以直皆就不用到門事'],
        ['因為你現在月富是六九九嘛,我幫擬減衣百塊,兒且也不會江速'],
    ]
    gr.Interface(
        fn=ai_text,
        inputs=gr.Textbox(lines=2, label="欲校正的文字"),
        outputs=gr.Textbox(lines=2, label="修正後的文字"),
        title="客服ASR文本AI糾錯系統",
        description="""<a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/04 </a><br>
                    輸入ASR文本,糾正同音字/詞錯誤<br>
                    Masked Language Model (MLM) as correction BERT""",
        examples=examples
    ).launch()