Update app.py
Browse filesFile "/home/user/app/app.py", line 57
return corrected_text + ' ' + str(details)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SyntaxError: 'return' outside function
在except區塊中定義了幾個函數,但在except區塊的末尾,您直接使用了return語句,而這個return語句不屬於任何函數,這就是導致語法錯誤的原因。
移動函數定義:將ai_text、to_highlight和get_errors函數移出except區塊,使其成為全域函數。
例外處理:在except區塊中加入適當的異常處理邏輯,例如列印錯誤訊息。
介面定義:確認Gradio 介面的建立和配置正確無誤。
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import operator
|
5 |
import torch
|
@@ -7,58 +5,41 @@ import os
|
|
7 |
from transformers import BertTokenizer, BertForMaskedLM
|
8 |
|
9 |
# 使用私有模型和分詞器
|
10 |
-
model_name_or_path = "DeepLearning101/Corrector101zhTW"
|
11 |
-
# auth_token = os.getenv("Corrector101zhTW") # 從環境變量中獲取 token
|
12 |
-
|
13 |
-
# tokenizer = BertTokenizer.from_pretrained(model_name_or_path, use_auth_token=auth_token)
|
14 |
-
# model = BertForMaskedLM.from_pretrained(model_name_or_path, use_auth_token=auth_token)
|
15 |
-
# tokenizer = BertTokenizer.from_pretrained(model_name_or_path)
|
16 |
-
# model = BertForMaskedLM.from_pretrained(model_name_or_path)
|
17 |
-
|
18 |
model_name_or_path = "DeepLearning101/Corrector101zhTW"
|
19 |
|
|
|
20 |
try:
|
21 |
tokenizer = BertTokenizer.from_pretrained(model_name_or_path)
|
22 |
model = BertForMaskedLM.from_pretrained(model_name_or_path)
|
23 |
except Exception as e:
|
24 |
-
|
25 |
-
|
26 |
-
def ai_text(text):
|
27 |
-
with torch.no_grad():
|
28 |
-
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def get_errors(corrected_text, origin_text):
|
36 |
-
sub_details = []
|
37 |
-
for i, ori_char in enumerate(origin_text):
|
38 |
-
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
|
39 |
-
# add unk word
|
40 |
-
corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
|
41 |
-
continue
|
42 |
-
if i >= len(corrected_text):
|
43 |
-
continue
|
44 |
-
if ori_char != corrected_text[i]:
|
45 |
-
if ori_char.lower() == corrected_text[i]:
|
46 |
-
# pass english upper char
|
47 |
-
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
48 |
-
continue
|
49 |
-
sub_details.append((ori_char, corrected_text[i], i, i + 1))
|
50 |
-
sub_details = sorted(sub_details, key=operator.itemgetter(2))
|
51 |
-
return corrected_text, sub_details
|
52 |
-
|
53 |
-
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
|
54 |
-
corrected_text = _text[:len(text)]
|
55 |
-
corrected_text, details = get_errors(corrected_text, text)
|
56 |
-
print(text, ' => ', corrected_text, details)
|
57 |
return corrected_text + ' ' + str(details)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == '__main__':
|
61 |
-
|
62 |
examples = [
|
63 |
['你究輸入利的手機門號跟生分證就可以了。'],
|
64 |
['這裡是客服中新,很高性為您服物,請問金天有什麼須要幫忙'],
|
@@ -66,16 +47,13 @@ if __name__ == '__main__':
|
|
66 |
['我來看以下,他的時價是多少?起實您就可以直皆就不用到門事'],
|
67 |
['因為你現在月富是六九九嘛,我幫擬減衣百塊,兒且也不會江速'],
|
68 |
]
|
69 |
-
|
70 |
-
inputs=[gr.Textbox(lines=2, label="欲校正的文字")],
|
71 |
-
outputs=[gr.Textbox(lines=2, label="修正後的文字")],
|
72 |
gr.Interface(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
).launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import operator
|
3 |
import torch
|
|
|
5 |
from transformers import BertTokenizer, BertForMaskedLM
|
6 |
|
7 |
# 使用私有模型和分詞器
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model_name_or_path = "DeepLearning101/Corrector101zhTW"
|
9 |
|
10 |
+
# 嘗試加載模型和分詞器
|
11 |
try:
|
12 |
tokenizer = BertTokenizer.from_pretrained(model_name_or_path)
|
13 |
model = BertForMaskedLM.from_pretrained(model_name_or_path)
|
14 |
except Exception as e:
|
15 |
+
print(f"加載模型或分詞器失敗,錯誤信息:{e}")
|
16 |
+
exit(1)
|
|
|
|
|
|
|
17 |
|
18 |
+
def ai_text(text):
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
|
21 |
+
corrected_text, details = get_errors(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
return corrected_text + ' ' + str(details)
|
23 |
|
24 |
+
def to_highlight(corrected_sent, errs):
|
25 |
+
output = [{"entity": "糾錯", "word": err[1], "start": err[2], "end": err[3]} for err in errs]
|
26 |
+
return {"text": corrected_sent, "entities": output}
|
27 |
+
|
28 |
+
def get_errors(text):
|
29 |
+
sub_details = []
|
30 |
+
corrected_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
|
31 |
+
for i, ori_char in enumerate(text):
|
32 |
+
# 略過特定字符
|
33 |
+
if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
|
34 |
+
continue
|
35 |
+
if i >= len(corrected_text):
|
36 |
+
continue
|
37 |
+
if ori_char != corrected_text[i]:
|
38 |
+
sub_details.append((ori_char, corrected_text[i], i, i + 1))
|
39 |
+
sub_details = sorted(sub_details, key=operator.itemgetter(2))
|
40 |
+
return corrected_text, sub_details
|
41 |
|
42 |
if __name__ == '__main__':
|
|
|
43 |
examples = [
|
44 |
['你究輸入利的手機門號跟生分證就可以了。'],
|
45 |
['這裡是客服中新,很高性為您服物,請問金天有什麼須要幫忙'],
|
|
|
47 |
['我來看以下,他的時價是多少?起實您就可以直皆就不用到門事'],
|
48 |
['因為你現在月富是六九九嘛,我幫擬減衣百塊,兒且也不會江速'],
|
49 |
]
|
|
|
|
|
|
|
50 |
gr.Interface(
|
51 |
+
fn=ai_text,
|
52 |
+
inputs=gr.Textbox(lines=2, label="欲校正的文字"),
|
53 |
+
outputs=gr.Textbox(lines=2, label="修正後的文字"),
|
54 |
+
title="客服ASR文本AI糾錯系統",
|
55 |
+
description="""<a href="https://www.twman.org" target='_blank'>TonTon Huang Ph.D. @ 2024/04 </a><br>
|
56 |
+
輸入ASR文本,糾正同音字/詞錯誤<br>
|
57 |
+
Masked Language Model (MLM) as correction BERT""",
|
58 |
+
examples=examples
|
59 |
).launch()
|