File size: 6,648 Bytes
ab9d843
ab366bd
ab9d843
 
24fc3ef
ab9d843
 
ab366bd
ab9d843
ab366bd
 
 
36ada58
ab9d843
36ada58
ab9d843
 
 
 
36ada58
 
 
 
 
 
 
 
24fc3ef
 
36ada58
 
 
 
 
 
 
 
 
 
 
 
 
ab9d843
 
36ada58
ab9d843
36ada58
 
ab9d843
36ada58
ab9d843
36ada58
ab9d843
 
36ada58
 
 
 
 
 
 
 
ab9d843
 
36ada58
ab9d843
 
 
 
24fc3ef
ab9d843
 
24fc3ef
 
 
 
 
 
 
 
ab9d843
 
24fc3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9d843
24fc3ef
 
 
 
 
 
 
ab9d843
 
 
 
 
 
 
 
36ada58
 
 
 
 
ab9d843
36ada58
 
 
 
 
 
 
 
ab9d843
36ada58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9d843
ab366bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24fc3ef
ab366bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
from pathlib import Path
import fitz  # PyMuPDF for PDF handling
from PIL import Image
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor  # For Qwen2.5 VL
import torch
import gradio as gr

# Create output directory
OUTPUT_DIR = Path("outputs")
OUTPUT_DIR.mkdir(exist_ok=True)

def generate_page_image(pdf_path, page_num):
    """
    Generate an image from a specific PDF page for analysis
    """
    try:
        # Open the PDF
        pdf_document = fitz.open(pdf_path)
        page = pdf_document[page_num]
        
        # Get the page dimensions to determine appropriate resolution
        rect = page.rect
        width = rect.width
        height = rect.height
        
        # Calculate appropriate zoom factor to get good quality images
        # Aim for approximately 1000 pixels on the longest side (reduced for efficiency)
        zoom = 1000 / max(width, height)
        
        # Create a transformation matrix
        mat = fitz.Matrix(zoom, zoom)
        
        # Render page to an image
        pix = page.get_pixmap(matrix=mat)
        
        # Convert to PIL Image
        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        
        # Save image
        image_path = OUTPUT_DIR / f"page_{page_num + 1}.png"
        img.save(image_path, "PNG")
        
        pdf_document.close()
        return image_path
    except Exception as e:
        print(f"Error generating image for page {page_num + 1}: {str(e)}")
        return None

def extract_text_from_pdf(pdf_path, page_num):
    """
    Extract text directly from a specific PDF page
    """
    try:
        # Open the PDF
        pdf_document = fitz.open(pdf_path)
        page = pdf_document[page_num]
        
        # Extract text
        text = page.get_text("text")
        
        pdf_document.close()
        return text.strip()
    except Exception as e:
        print(f"Error extracting text from page {page_num + 1}: {str(e)}")
        return ""

def analyze_image(image_path):
    """
    Analyze image content using Qwen2.5 VL model for detailed description
    """
    try:
        # Load Qwen2.5 VL model and processor
        model = Qwen2VLForConditionalGeneration.from_pretrained(
            "Qwen/Qwen2-VL-72B-Instruct",
            torch_dtype=torch.float16,  # Use float16 for efficiency
            device_map="auto"  # Automatically distribute across available GPUs
        )
        processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct")

        # Load and process image
        image = Image.open(image_path).convert('RGB')

        # Prepare input for the model (image + prompt)
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": "Provide a detailed description of the content in this image, focusing on text, layout, and any diagrams or figures."}
                ]
            }
        ]

        # Process the input
        text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = processor(
            text=text_prompt,
            images=[image],
            padding=True,
            return_tensors="pt"
        )

        # Move inputs to the appropriate device
        inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")

        # Generate description
        with torch.no_grad():
            output_ids = model.generate(**inputs, max_new_tokens=512)
        generated_text = processor.decode(output_ids[0], skip_special_tokens=True)

        # Extract only the assistant's response (remove the prompt)
        response = generated_text.split("Assistant: ")[1] if "Assistant: " in generated_text else generated_text

        return response
    except Exception as e:
        print(f"Error during image analysis: {str(e)}")
        return "Image content could not be analyzed."

def process_pdf(pdf_path, output_txt_path):
    """
    Main function to process the PDF and generate output
    """
    try:
        # Open the PDF to get page count
        pdf_document = fitz.open(pdf_path)
        num_pages = len(pdf_document)
        pdf_document.close()
        
        if num_pages == 0:
            print("The PDF is empty.")
            return
        
        # Prepare output file
        with open(output_txt_path, 'w', encoding='utf-8') as f:
            f.write(f"Analysis of {os.path.basename(pdf_path)}\n")
            f.write("=" * 50 + "\n\n")
            
            # Process each page
            for page_num in range(num_pages):
                print(f"Processing page {page_num + 1}...")
                
                # Write page header
                f.write(f"Page {page_num + 1}\n")
                f.write("-" * 30 + "\n\n")
                
                # Extract and write text
                text = extract_text_from_pdf(pdf_path, page_num)
                if text:
                    f.write("Extracted Text:\n")
                    f.write(text)
                    f.write("\n\n")
                else:
                    f.write("No text could be extracted from this page.\n\n")
                
                # Generate image for analysis and write description
                image_path = generate_page_image(pdf_path, page_num)
                if image_path:
                    description = analyze_image(image_path)
                    f.write("Image Description:\n")
                    f.write(f"{description}\n")
                    f.write("\n" + "=" * 50 + "\n\n")
                else:
                    f.write("Image Description:\n")
                    f.write("Could not generate image for analysis.\n")
                    f.write("\n" + "=" * 50 + "\n\n")
        
        print(f"Processing complete. Results saved to {output_txt_path}")
    except Exception as e:
        print(f"Error processing PDF: {str(e)}")

def process_uploaded_pdf(pdf_file):
    if pdf_file is None:
        return "Please upload a PDF file."
    
    output_txt = OUTPUT_DIR / "analysis_results.txt"
    process_pdf(pdf_file.name, output_txt)
    
    # Read and return the results
    with open(output_txt, 'r', encoding='utf-8') as f:
        results = f.read()
    
    return results

# Create Gradio interface
interface = gr.Interface(
    fn=process_uploaded_pdf,
    inputs=gr.File(label="Upload PDF"),
    outputs=gr.Textbox(label="Analysis Results"),
    title="PDF Analyzer",
    description="Upload a PDF file to extract text directly and analyze images using Qwen2.5 VL."
)

interface.launch()