Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,134 @@
|
|
1 |
-
import
|
2 |
-
from script import process_pdf # Assuming the above script is saved as script.py
|
3 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
OUTPUT_DIR = Path("outputs")
|
6 |
OUTPUT_DIR.mkdir(exist_ok=True)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def process_uploaded_pdf(pdf_file):
|
9 |
if pdf_file is None:
|
10 |
return "Please upload a PDF file."
|
|
|
1 |
+
import os
|
|
|
2 |
from pathlib import Path
|
3 |
+
import fitz # PyMuPDF for PDF handling
|
4 |
+
from PIL import Image
|
5 |
+
import pytesseract # For OCR
|
6 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration # For image captioning
|
7 |
+
import io
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
|
11 |
+
# Create output directory
|
12 |
OUTPUT_DIR = Path("outputs")
|
13 |
OUTPUT_DIR.mkdir(exist_ok=True)
|
14 |
|
15 |
+
def pdf_to_images(pdf_path):
|
16 |
+
"""
|
17 |
+
Convert PDF pages to appropriately sized images
|
18 |
+
"""
|
19 |
+
try:
|
20 |
+
# Open the PDF
|
21 |
+
pdf_document = fitz.open(pdf_path)
|
22 |
+
images = []
|
23 |
+
|
24 |
+
for page_num in range(len(pdf_document)):
|
25 |
+
page = pdf_document[page_num]
|
26 |
+
|
27 |
+
# Get the page dimensions to determine appropriate resolution
|
28 |
+
rect = page.rect
|
29 |
+
width = rect.width
|
30 |
+
height = rect.height
|
31 |
+
|
32 |
+
# Calculate appropriate zoom factor to get good quality images
|
33 |
+
# Aim for approximately 2000 pixels on the longest side
|
34 |
+
zoom = 2000 / max(width, height)
|
35 |
+
|
36 |
+
# Create a transformation matrix
|
37 |
+
mat = fitz.Matrix(zoom, zoom)
|
38 |
+
|
39 |
+
# Render page to an image
|
40 |
+
pix = page.get_pixmap(matrix=mat)
|
41 |
+
|
42 |
+
# Convert to PIL Image
|
43 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
44 |
+
|
45 |
+
# Save image
|
46 |
+
image_path = OUTPUT_DIR / f"page_{page_num + 1}.png"
|
47 |
+
img.save(image_path, "PNG")
|
48 |
+
images.append((image_path, img))
|
49 |
+
|
50 |
+
pdf_document.close()
|
51 |
+
return images
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error converting PDF to images: {str(e)}")
|
54 |
+
return []
|
55 |
+
|
56 |
+
def extract_text_from_image(image):
|
57 |
+
"""
|
58 |
+
Extract text from an image using OCR
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
text = pytesseract.image_to_string(image)
|
62 |
+
return text.strip()
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error during OCR: {str(e)}")
|
65 |
+
return ""
|
66 |
+
|
67 |
+
def analyze_image(image_path):
|
68 |
+
"""
|
69 |
+
Analyze image content using BLIP model for image captioning
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
# Load BLIP model and processor
|
73 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
74 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
75 |
+
|
76 |
+
# Load and process image
|
77 |
+
image = Image.open(image_path).convert('RGB')
|
78 |
+
inputs = processor(image, return_tensors="pt")
|
79 |
+
|
80 |
+
# Generate caption
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model.generate(**inputs)
|
83 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
84 |
+
|
85 |
+
return caption
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error during image analysis: {str(e)}")
|
88 |
+
return "Image content could not be analyzed."
|
89 |
+
|
90 |
+
def process_pdf(pdf_path, output_txt_path):
|
91 |
+
"""
|
92 |
+
Main function to process the PDF and generate output
|
93 |
+
"""
|
94 |
+
# Convert PDF to images
|
95 |
+
print("Converting PDF to images...")
|
96 |
+
images = pdf_to_images(pdf_path)
|
97 |
+
|
98 |
+
if not images:
|
99 |
+
print("No images were generated from the PDF.")
|
100 |
+
return
|
101 |
+
|
102 |
+
# Prepare output file
|
103 |
+
with open(output_txt_path, 'w', encoding='utf-8') as f:
|
104 |
+
f.write(f"Analysis of {os.path.basename(pdf_path)}\n")
|
105 |
+
f.write("=" * 50 + "\n\n")
|
106 |
+
|
107 |
+
# Process each page
|
108 |
+
for page_num, (image_path, image) in enumerate(images, 1):
|
109 |
+
print(f"Processing page {page_num}...")
|
110 |
+
|
111 |
+
# Write page header
|
112 |
+
f.write(f"Page {page_num}\n")
|
113 |
+
f.write("-" * 30 + "\n\n")
|
114 |
+
|
115 |
+
# Extract and write text
|
116 |
+
text = extract_text_from_image(image)
|
117 |
+
if text:
|
118 |
+
f.write("Extracted Text:\n")
|
119 |
+
f.write(text)
|
120 |
+
f.write("\n\n")
|
121 |
+
else:
|
122 |
+
f.write("No text could be extracted from this page.\n\n")
|
123 |
+
|
124 |
+
# Analyze image and write description
|
125 |
+
description = analyze_image(image_path)
|
126 |
+
f.write("Image Description:\n")
|
127 |
+
f.write(f"{description}\n")
|
128 |
+
f.write("\n" + "=" * 50 + "\n\n")
|
129 |
+
|
130 |
+
print(f"Processing complete. Results saved to {output_txt_path}")
|
131 |
+
|
132 |
def process_uploaded_pdf(pdf_file):
|
133 |
if pdf_file is None:
|
134 |
return "Please upload a PDF file."
|