|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_anthropic import ChatAnthropic |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
import re |
|
|
|
load_dotenv() |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiplies two integers and returns the result.""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Adds two integers and returns the sum.""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtracts the second integer from the first and returns the result.""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divides the first integer by the second and returns the result as a float.""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Returns the remainder of dividing the first integer by the second.""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Searches Wikipedia for a query and returns the top 2 results as a formatted string.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Uses Tavily to search the web for a query and returns the top 3 result snippets.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Searches Arxiv for academic papers related to the query and returns the top 3 abstracts.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs]) |
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="Vector_Test", |
|
query_name="match_documents_langchain", |
|
) |
|
|
|
|
|
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] |
|
|
|
|
|
def build_graph(provider: str = "huggingface"): |
|
if provider == "huggingface": |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", |
|
temperature=0, |
|
huggingfacehub_api_token=os.getenv("HF_TOKEN") |
|
) |
|
) |
|
else: |
|
raise ValueError("Only 'huggingface' (Qwen3) is supported in this build.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def retriever(state: MessagesState): |
|
query = state["messages"][-1].content |
|
similar = vector_store.similarity_search(query) |
|
return { |
|
"messages": [ |
|
sys_msg, |
|
state["messages"][-1], |
|
HumanMessage(content=f"Reference: {similar[0].page_content}") |
|
] |
|
} |
|
|
|
def assistant(state: MessagesState): |
|
response = llm_with_tools.invoke(state["messages"]) |
|
return {"messages": state["messages"] + [response]} |
|
|
|
def formatter(state: MessagesState): |
|
last = state["messages"][-1].content.strip() |
|
cleaned = re.sub(r"<.*?>", "", last) |
|
cleaned = re.sub(r"(Final\s*Answer:|Answer:)", "", cleaned, flags=re.IGNORECASE) |
|
cleaned = cleaned.strip().split("\n")[0].strip() |
|
return {"messages": [AIMessage(content=cleaned)]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_node("formatter", formatter) |
|
|
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
builder.add_edge("assistant", "formatter") |
|
|
|
return builder.compile() |
|
|
|
|
|
if __name__ == "__main__": |
|
graph = build_graph() |
|
result = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]}) |
|
for m in result["messages"]: |
|
m.pretty_print() |
|
|
|
|