|
|
|
"""VTON_GarmentMasker.ipynb |
|
Automatically generated by Colab. |
|
Original file is located at |
|
https://colab.research.google.com/drive/1Y22abu3jZQ5qCKP7DTR6kYvXdQbHnJCu |
|
Using YOLO Clothing Classification Model |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from torchvision import transforms |
|
from ultralytics import YOLO |
|
from segment_anything import SamPredictor, sam_model_registry |
|
from transformers import YolosForObjectDetection, YolosImageProcessor |
|
import gradio as gr |
|
import os |
|
import urllib.request |
|
|
|
class GarmentMaskingPipeline: |
|
def __init__(self): |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {self.device}") |
|
self.yolo_model, self.sam_predictor, self.classification_model = self.load_models() |
|
|
|
self.clothing_to_body_parts = { |
|
'shirt': ['torso', 'arms'], |
|
't-shirt': ['torso', 'upper_arms'], |
|
'blouse': ['torso', 'arms'], |
|
'dress': ['torso', 'legs'], |
|
'skirt': ['lower_torso', 'legs'], |
|
'pants': ['legs'], |
|
'shorts': ['upper_legs'], |
|
'jacket': ['torso', 'arms'], |
|
'coat': ['torso', 'arms'] |
|
} |
|
|
|
self.body_parts_positions = { |
|
'face': (0.0, 0.2), |
|
'torso': (0.2, 0.5), |
|
'arms': (0.2, 0.5), |
|
'upper_arms': (0.2, 0.35), |
|
'lower_torso': (0.4, 0.6), |
|
'legs': (0.5, 0.9), |
|
'upper_legs': (0.5, 0.7), |
|
'feet': (0.9, 1.0) |
|
} |
|
|
|
def load_models(self): |
|
print("Loading models...") |
|
|
|
self.download_models() |
|
|
|
|
|
yolo_model = YOLO('yolov8n.pt') |
|
|
|
|
|
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth") |
|
sam.to(self.device) |
|
predictor = SamPredictor(sam) |
|
|
|
|
|
print("Loading YOLOS-Fashionpedia model...") |
|
model_name = "valentinafeve/yolos-fashionpedia" |
|
processor = YolosImageProcessor.from_pretrained(model_name) |
|
classification_model = YolosForObjectDetection.from_pretrained(model_name) |
|
classification_model.to(self.device) |
|
classification_model.eval() |
|
|
|
print("Models loaded successfully!") |
|
return yolo_model, predictor, classification_model |
|
|
|
def download_models(self): |
|
"""Download required model files if they don't exist""" |
|
models = { |
|
"yolov8n.pt": "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt", |
|
"sam_vit_h_4b8939.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" |
|
} |
|
|
|
for filename, url in models.items(): |
|
if not os.path.exists(filename): |
|
print(f"Downloading {filename}...") |
|
urllib.request.urlretrieve(url, filename) |
|
print(f"Downloaded {filename}") |
|
else: |
|
print(f"{filename} already exists") |
|
|
|
|
|
|
|
def classify_clothing(self, clothing_image): |
|
if not isinstance(clothing_image, Image.Image): |
|
clothing_image = Image.fromarray(clothing_image) |
|
|
|
|
|
processor = YolosImageProcessor.from_pretrained("valentinafeve/yolos-fashionpedia") |
|
inputs = processor(images=clothing_image, return_tensors="pt").to(self.device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.classification_model(**inputs) |
|
|
|
|
|
target_sizes = torch.tensor([clothing_image.size[::-1]]).to(self.device) |
|
results = processor.post_process_object_detection( |
|
outputs, target_sizes=target_sizes, threshold=0.1 |
|
)[0] |
|
|
|
|
|
labels = results["labels"] |
|
scores = results["scores"] |
|
|
|
|
|
id2label = self.classification_model.config.id2label |
|
|
|
|
|
fashionpedia_to_clothing = { |
|
'shirt': 'shirt', |
|
'blouse': 'shirt', |
|
'top': 't-shirt', |
|
't-shirt': 't-shirt', |
|
'sweater': 'shirt', |
|
'jacket': 'jacket', |
|
'cardigan': 'jacket', |
|
'coat': 'coat', |
|
'jumper': 'shirt', |
|
'dress': 'dress', |
|
'skirt': 'skirt', |
|
'shorts': 'shorts', |
|
'pants': 'pants', |
|
'jeans': 'pants', |
|
'leggings': 'pants', |
|
'jumpsuit': 'dress' |
|
} |
|
|
|
|
|
if len(labels) > 0: |
|
detections = [(id2label[label.item()].lower(), score.item()) |
|
for label, score in zip(labels, scores)] |
|
detections.sort(key=lambda x: x[1], reverse=True) |
|
|
|
for label, score in detections: |
|
|
|
for keyword, category in fashionpedia_to_clothing.items(): |
|
if keyword in label: |
|
return category |
|
|
|
|
|
return 't-shirt' |
|
|
|
|
|
return 't-shirt' |
|
|
|
def create_garment_mask(self, person_image, garment_image): |
|
clothing_type = self.classify_clothing(garment_image) |
|
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, []) |
|
|
|
results = self.yolo_model(person_image, classes=[0]) |
|
mask = np.zeros(person_image.shape[:2], dtype=np.uint8) |
|
|
|
if results and len(results[0].boxes.data) > 0: |
|
person_boxes = results[0].boxes.data |
|
person_areas = [(box[2] - box[0]) * (box[3] - box[1]) for box in person_boxes] |
|
largest_person_index = np.argmax(person_areas) |
|
person_box = person_boxes[largest_person_index][:4].cpu().numpy().astype(int) |
|
|
|
self.sam_predictor.set_image(person_image) |
|
masks, _, _ = self.sam_predictor.predict(box=person_box, multimask_output=False) |
|
person_mask = masks[0].astype(np.uint8) |
|
|
|
h, w = person_mask.shape |
|
for part in parts_to_mask: |
|
if part in self.body_parts_positions: |
|
top_ratio, bottom_ratio = self.body_parts_positions[part] |
|
top_px, bottom_px = int(h * top_ratio), int(h * bottom_ratio) |
|
|
|
part_mask = np.zeros_like(person_mask) |
|
part_mask[top_px:bottom_px, :] = 1 |
|
part_mask = np.logical_and(part_mask, person_mask).astype(np.uint8) |
|
|
|
mask = np.logical_or(mask, part_mask).astype(np.uint8) |
|
|
|
|
|
face_top_px, face_bottom_px = int(h * 0.0), int(h * 0.2) |
|
face_mask = np.zeros_like(person_mask) |
|
face_mask[face_top_px:face_bottom_px, :] = 1 |
|
face_mask = np.logical_and(face_mask, person_mask).astype(np.uint8) |
|
mask = np.logical_and(mask, np.logical_not(face_mask)).astype(np.uint8) |
|
|
|
|
|
feet_top_px, feet_bottom_px = int(h * 0.9), int(h * 1.0) |
|
feet_mask = np.zeros_like(person_mask) |
|
feet_mask[feet_top_px:feet_bottom_px, :] = 1 |
|
feet_mask = np.logical_and(feet_mask, person_mask).astype(np.uint8) |
|
mask = np.logical_and(mask, np.logical_not(feet_mask)).astype(np.uint8) |
|
|
|
return mask * 255 |
|
|
|
def process(self, person_image_pil, garment_image_pil, mask_color_hex="#00FF00", opacity=0.5): |
|
"""Process the input images and return the masked result""" |
|
|
|
person_image = np.array(person_image_pil) |
|
garment_image = np.array(garment_image_pil) |
|
|
|
|
|
if person_image.shape[2] == 4: |
|
person_image = person_image[:, :, :3] |
|
if garment_image.shape[2] == 4: |
|
garment_image = garment_image[:, :, :3] |
|
|
|
|
|
garment_mask = self.create_garment_mask(person_image, garment_image) |
|
|
|
|
|
r = int(mask_color_hex[1:3], 16) |
|
g = int(mask_color_hex[3:5], 16) |
|
b = int(mask_color_hex[5:7], 16) |
|
color = (r, g, b) |
|
|
|
|
|
colored_mask = np.zeros_like(person_image) |
|
for i in range(3): |
|
colored_mask[:, :, i] = garment_mask * (color[i] / 255.0) |
|
|
|
|
|
binary_mask = np.stack([garment_mask, garment_mask, garment_mask], axis=2) |
|
|
|
|
|
mask_3d = garment_mask[:, :, np.newaxis] / 255.0 |
|
overlay = person_image * (1 - opacity * mask_3d) + colored_mask * opacity |
|
overlay = overlay.astype(np.uint8) |
|
|
|
|
|
clothing_type = self.classify_clothing(garment_image) |
|
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, []) |
|
|
|
return overlay, binary_mask, f"Detected garment: {clothing_type}\nBody parts to mask: {', '.join(parts_to_mask)}" |
|
|
|
def process_images(person_img, garment_img, mask_color, opacity): |
|
"""Gradio processing function""" |
|
try: |
|
pipeline = GarmentMaskingPipeline() |
|
result = pipeline.process(person_img, garment_img, mask_color, opacity) |
|
return result |
|
except Exception as e: |
|
import traceback |
|
error_msg = f"Error processing images: {str(e)}\n{traceback.format_exc()}" |
|
print(error_msg) |
|
return None, None, error_msg |
|
|
|
def create_gradio_interface(): |
|
"""Create and launch the Gradio interface""" |
|
with gr.Blocks(title="VTON SAM Garment Masking Pipeline") as interface: |
|
gr.Markdown(""" |
|
# Virtual Try-On Garment Masking Pipeline with SAM and YOLOS-Fashionpedia |
|
Upload a person image and a garment image to generate a mask for a virtual try-on application. |
|
The system will: |
|
1. Detect the person using YOLO |
|
2. Create a high-quality segmentation using SAM (Segment Anything Model) |
|
3. Classify the garment type using YOLOS-Fashionpedia |
|
4. Generate a mask of the area where the garment should be placed |
|
**Note**: This system uses state-of-the-art AI segmentation and fashion detection models for accurate results. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
person_input = gr.Image(label="Person Image (Image A)", type="pil") |
|
garment_input = gr.Image(label="Garment Image (Image B)", type="pil") |
|
|
|
with gr.Row(): |
|
mask_color = gr.ColorPicker(label="Mask Color", value="#00FF00") |
|
opacity = gr.Slider(label="Mask Opacity", minimum=0.1, maximum=0.9, value=0.5, step=0.1) |
|
|
|
submit_btn = gr.Button("Generate Mask") |
|
|
|
with gr.Column(): |
|
masked_output = gr.Image(label="Person with Masked Region") |
|
mask_output = gr.Image(label="Standalone Mask") |
|
result_text = gr.Textbox(label="Detection Results", lines=3) |
|
|
|
|
|
submit_btn.click( |
|
fn=process_images, |
|
inputs=[person_input, garment_input, mask_color, opacity], |
|
outputs=[masked_output, mask_output, result_text] |
|
) |
|
|
|
gr.Markdown(""" |
|
## How It Works |
|
1. **Person Detection**: Uses YOLO to detect and locate the person in the image |
|
2. **Segmentation**: Uses SAM (Segment Anything Model) to create a high-quality segmentation mask |
|
3. **Garment Classification**: Uses YOLOS-Fashionpedia to identify the garment type with fashion-specific detection |
|
4. **Mask Generation**: Creates a mask based on the garment type and body part mapping |
|
## Supported Garment Types |
|
- Shirts, Blouses, Tops, and T-shirts |
|
- Sweaters and Cardigans |
|
- Dresses and Jumpsuits |
|
- Skirts |
|
- Pants, Jeans, and Leggings |
|
- Shorts |
|
- |
|
Jackets and Coats |
|
""") |
|
|
|
return interface |
|
|
|
if __name__ == "__main__": |
|
|
|
interface = create_gradio_interface() |
|
interface.launch(debug=True,share=True) |
|
|