File size: 12,677 Bytes
be322b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# -*- coding: utf-8 -*-
"""VTON_GarmentMasker.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Y22abu3jZQ5qCKP7DTR6kYvXdQbHnJCu
Using YOLO Clothing Classification Model
"""
# !pip install gradio
# !pip install ultralytics
# !pip install segment-anything
# !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
import torch
import numpy as np
import cv2
from PIL import Image
from torchvision import transforms
from ultralytics import YOLO
from segment_anything import SamPredictor, sam_model_registry
from transformers import YolosForObjectDetection, YolosImageProcessor
import gradio as gr
import os
import urllib.request
class GarmentMaskingPipeline:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {self.device}")
self.yolo_model, self.sam_predictor, self.classification_model = self.load_models()
self.clothing_to_body_parts = {
'shirt': ['torso', 'arms'],
't-shirt': ['torso', 'upper_arms'],
'blouse': ['torso', 'arms'],
'dress': ['torso', 'legs'],
'skirt': ['lower_torso', 'legs'],
'pants': ['legs'],
'shorts': ['upper_legs'],
'jacket': ['torso', 'arms'],
'coat': ['torso', 'arms']
}
self.body_parts_positions = {
'face': (0.0, 0.2),
'torso': (0.2, 0.5),
'arms': (0.2, 0.5),
'upper_arms': (0.2, 0.35),
'lower_torso': (0.4, 0.6),
'legs': (0.5, 0.9),
'upper_legs': (0.5, 0.7),
'feet': (0.9, 1.0)
}
def load_models(self):
print("Loading models...")
# Download models if they don't exist
self.download_models()
# Load YOLO model
yolo_model = YOLO('yolov8n.pt')
# Load SAM model
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
sam.to(self.device)
predictor = SamPredictor(sam)
# Load YOLOS-Fashionpedia model for clothing classification
print("Loading YOLOS-Fashionpedia model...")
model_name = "valentinafeve/yolos-fashionpedia"
processor = YolosImageProcessor.from_pretrained(model_name)
classification_model = YolosForObjectDetection.from_pretrained(model_name)
classification_model.to(self.device)
classification_model.eval()
print("Models loaded successfully!")
return yolo_model, predictor, classification_model
def download_models(self):
"""Download required model files if they don't exist"""
models = {
"yolov8n.pt": "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt",
"sam_vit_h_4b8939.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
}
for filename, url in models.items():
if not os.path.exists(filename):
print(f"Downloading {filename}...")
urllib.request.urlretrieve(url, filename)
print(f"Downloaded {filename}")
else:
print(f"{filename} already exists")
# The YOLOS-Fashionpedia model will be downloaded automatically by transformers
def classify_clothing(self, clothing_image):
if not isinstance(clothing_image, Image.Image):
clothing_image = Image.fromarray(clothing_image)
# Process image with YOLOS processor
processor = YolosImageProcessor.from_pretrained("valentinafeve/yolos-fashionpedia")
inputs = processor(images=clothing_image, return_tensors="pt").to(self.device)
# Run inference
with torch.no_grad():
outputs = self.classification_model(**inputs)
# Process results
target_sizes = torch.tensor([clothing_image.size[::-1]]).to(self.device)
results = processor.post_process_object_detection(
outputs, target_sizes=target_sizes, threshold=0.1
)[0]
# Extract detected labels and confidence scores
labels = results["labels"]
scores = results["scores"]
# Get class names from model config
id2label = self.classification_model.config.id2label
# Define Fashionpedia to our category mapping
fashionpedia_to_clothing = {
'shirt': 'shirt',
'blouse': 'shirt',
'top': 't-shirt',
't-shirt': 't-shirt',
'sweater': 'shirt',
'jacket': 'jacket',
'cardigan': 'jacket',
'coat': 'coat',
'jumper': 'shirt',
'dress': 'dress',
'skirt': 'skirt',
'shorts': 'shorts',
'pants': 'pants',
'jeans': 'pants',
'leggings': 'pants',
'jumpsuit': 'dress'
}
# Find the garment with highest confidence
if len(labels) > 0:
detections = [(id2label[label.item()].lower(), score.item())
for label, score in zip(labels, scores)]
detections.sort(key=lambda x: x[1], reverse=True)
for label, score in detections:
# Look for clothing keywords in the label
for keyword, category in fashionpedia_to_clothing.items():
if keyword in label:
return category
# If no mapping found, use the first detection as is
return 't-shirt'
# Default to t-shirt if nothing detected
return 't-shirt'
def create_garment_mask(self, person_image, garment_image):
clothing_type = self.classify_clothing(garment_image)
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, [])
results = self.yolo_model(person_image, classes=[0])
mask = np.zeros(person_image.shape[:2], dtype=np.uint8)
if results and len(results[0].boxes.data) > 0:
person_boxes = results[0].boxes.data
person_areas = [(box[2] - box[0]) * (box[3] - box[1]) for box in person_boxes]
largest_person_index = np.argmax(person_areas)
person_box = person_boxes[largest_person_index][:4].cpu().numpy().astype(int)
self.sam_predictor.set_image(person_image)
masks, _, _ = self.sam_predictor.predict(box=person_box, multimask_output=False)
person_mask = masks[0].astype(np.uint8)
h, w = person_mask.shape
for part in parts_to_mask:
if part in self.body_parts_positions:
top_ratio, bottom_ratio = self.body_parts_positions[part]
top_px, bottom_px = int(h * top_ratio), int(h * bottom_ratio)
part_mask = np.zeros_like(person_mask)
part_mask[top_px:bottom_px, :] = 1
part_mask = np.logical_and(part_mask, person_mask).astype(np.uint8)
mask = np.logical_or(mask, part_mask).astype(np.uint8)
# Remove face from the mask
face_top_px, face_bottom_px = int(h * 0.0), int(h * 0.2)
face_mask = np.zeros_like(person_mask)
face_mask[face_top_px:face_bottom_px, :] = 1
face_mask = np.logical_and(face_mask, person_mask).astype(np.uint8)
mask = np.logical_and(mask, np.logical_not(face_mask)).astype(np.uint8)
# Remove feet from the mask
feet_top_px, feet_bottom_px = int(h * 0.9), int(h * 1.0)
feet_mask = np.zeros_like(person_mask)
feet_mask[feet_top_px:feet_bottom_px, :] = 1
feet_mask = np.logical_and(feet_mask, person_mask).astype(np.uint8)
mask = np.logical_and(mask, np.logical_not(feet_mask)).astype(np.uint8)
return mask * 255
def process(self, person_image_pil, garment_image_pil, mask_color_hex="#00FF00", opacity=0.5):
"""Process the input images and return the masked result"""
# Convert PIL to numpy array
person_image = np.array(person_image_pil)
garment_image = np.array(garment_image_pil)
# Convert to RGB if needed
if person_image.shape[2] == 4: # RGBA
person_image = person_image[:, :, :3]
if garment_image.shape[2] == 4: # RGBA
garment_image = garment_image[:, :, :3]
# Create garment mask
garment_mask = self.create_garment_mask(person_image, garment_image)
# Convert hex color to RGB
r = int(mask_color_hex[1:3], 16)
g = int(mask_color_hex[3:5], 16)
b = int(mask_color_hex[5:7], 16)
color = (r, g, b)
# Create a colored mask
colored_mask = np.zeros_like(person_image)
for i in range(3):
colored_mask[:, :, i] = garment_mask * (color[i] / 255.0)
# Create binary mask for visualization
binary_mask = np.stack([garment_mask, garment_mask, garment_mask], axis=2)
# Overlay mask on original image
mask_3d = garment_mask[:, :, np.newaxis] / 255.0
overlay = person_image * (1 - opacity * mask_3d) + colored_mask * opacity
overlay = overlay.astype(np.uint8)
# Get classification result
clothing_type = self.classify_clothing(garment_image)
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, [])
return overlay, binary_mask, f"Detected garment: {clothing_type}\nBody parts to mask: {', '.join(parts_to_mask)}"
def process_images(person_img, garment_img, mask_color, opacity):
"""Gradio processing function"""
try:
pipeline = GarmentMaskingPipeline()
result = pipeline.process(person_img, garment_img, mask_color, opacity)
return result
except Exception as e:
import traceback
error_msg = f"Error processing images: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, None, error_msg
def create_gradio_interface():
"""Create and launch the Gradio interface"""
with gr.Blocks(title="VTON SAM Garment Masking Pipeline") as interface:
gr.Markdown("""
# Virtual Try-On Garment Masking Pipeline with SAM and YOLOS-Fashionpedia
Upload a person image and a garment image to generate a mask for a virtual try-on application.
The system will:
1. Detect the person using YOLO
2. Create a high-quality segmentation using SAM (Segment Anything Model)
3. Classify the garment type using YOLOS-Fashionpedia
4. Generate a mask of the area where the garment should be placed
**Note**: This system uses state-of-the-art AI segmentation and fashion detection models for accurate results.
""")
with gr.Row():
with gr.Column():
person_input = gr.Image(label="Person Image (Image A)", type="pil")
garment_input = gr.Image(label="Garment Image (Image B)", type="pil")
with gr.Row():
mask_color = gr.ColorPicker(label="Mask Color", value="#00FF00")
opacity = gr.Slider(label="Mask Opacity", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
submit_btn = gr.Button("Generate Mask")
with gr.Column():
masked_output = gr.Image(label="Person with Masked Region")
mask_output = gr.Image(label="Standalone Mask")
result_text = gr.Textbox(label="Detection Results", lines=3)
# Set up the processing flow
submit_btn.click(
fn=process_images,
inputs=[person_input, garment_input, mask_color, opacity],
outputs=[masked_output, mask_output, result_text]
)
gr.Markdown("""
## How It Works
1. **Person Detection**: Uses YOLO to detect and locate the person in the image
2. **Segmentation**: Uses SAM (Segment Anything Model) to create a high-quality segmentation mask
3. **Garment Classification**: Uses YOLOS-Fashionpedia to identify the garment type with fashion-specific detection
4. **Mask Generation**: Creates a mask based on the garment type and body part mapping
## Supported Garment Types
- Shirts, Blouses, Tops, and T-shirts
- Sweaters and Cardigans
- Dresses and Jumpsuits
- Skirts
- Pants, Jeans, and Leggings
- Shorts
-
Jackets and Coats
""")
return interface
if __name__ == "__main__":
# Create and launch the Gradio interface
interface = create_gradio_interface()
interface.launch(debug=True,share=True)
|