Spaces:
Running
Running
import tempfile | |
from audiocraft.models import MusicGen | |
from audiocraft.data.audio import audio_write | |
import gradio as gr | |
import torch | |
import uuid | |
import os | |
from scipy.io.wavfile import write | |
model = MusicGen.get_pretrained("facebook/musicgen-small") | |
model.set_generation_params(duration=5) | |
def generate_music(description): | |
# This line was not indented properly, fixed by adding indentation | |
wav = model.generate([description]) | |
audio_array = wav.cpu().numpy().squeeze() | |
sample_rate = model.sample_rate | |
# Generate a unique file path | |
file_id = uuid.uuid1() | |
file_path = os.path.join( | |
tempfile.gettempdir(), | |
f'{file_id}.wav' | |
) | |
print(f"Temporary directory: {tempfile.gettempdir()}") | |
print(f"File path: {file_path}") | |
# Write the audio file to the temporary path | |
write(file_path, rate=sample_rate, data=audio_array) | |
return file_path | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_music, | |
inputs="text", | |
outputs=gr.components.Audio(type="filepath", label="Audio"), | |
title="Text to Audio Generation", | |
description="Generate audio based on text descriptions.", | |
live=False | |
) | |
# Launch the Gradio interface | |
iface.launch(debug=True) |