import tempfile from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write import gradio as gr import torch import uuid import os from scipy.io.wavfile import write model = MusicGen.get_pretrained("facebook/musicgen-small") model.set_generation_params(duration=5) def generate_music(description): # This line was not indented properly, fixed by adding indentation wav = model.generate([description]) audio_array = wav.cpu().numpy().squeeze() sample_rate = model.sample_rate # Generate a unique file path file_id = uuid.uuid1() file_path = os.path.join( tempfile.gettempdir(), f'{file_id}.wav' ) print(f"Temporary directory: {tempfile.gettempdir()}") print(f"File path: {file_path}") # Write the audio file to the temporary path write(file_path, rate=sample_rate, data=audio_array) return file_path # Create the Gradio interface iface = gr.Interface( fn=generate_music, inputs="text", outputs=gr.components.Audio(type="filepath", label="Audio"), title="Text to Audio Generation", description="Generate audio based on text descriptions.", live=False ) # Launch the Gradio interface iface.launch(debug=True)