Final_project / app.py
Dannyar608's picture
Update app.py
32164a9 verified
raw
history blame
27.9 kB
# ========== DEPENDENCY MANAGEMENT ==========
import sys
import subprocess
import importlib
from datetime import datetime
required_packages = {
'gradio': 'gradio>=3.0',
'pandas': 'pandas',
'PyPDF2': 'PyPDF2',
'transformers': 'transformers',
'pdfplumber': 'pdfplumber'
}
def check_and_install_packages():
missing_packages = []
for import_name, pkg_name in required_packages.items():
try:
importlib.import_module(import_name)
except ImportError:
missing_packages.append(pkg_name)
if missing_packages:
print(f"Missing packages: {', '.join(missing_packages)}")
subprocess.check_call([sys.executable, "-m", "pip", "install", *missing_packages])
check_and_install_packages()
# ========== MAIN IMPORTS ==========
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from transformers import pipeline
from typing import List, Dict, Union
import pdfplumber
# ========== TRANSCRIPT PARSING ==========
class UniversalTranscriptParser:
def __init__(self):
self.patterns = {
'miami_dade': self._compile_miami_dade_patterns(),
'homeschool': self._compile_homeschool_patterns(),
'doral_academy': self._compile_doral_academy_patterns()
}
self.grade_level_map = {
'09': '9th Grade', '10': '10th Grade', '11': '11th Grade', '12': '12th Grade',
'07': '7th Grade', '08': '8th Grade', 'MA': 'Middle School'
}
def parse_transcript(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Determine transcript type and parse accordingly"""
transcript_type = self._identify_transcript_type(text)
if transcript_type == 'homeschool':
return self._parse_homeschool(text)
elif transcript_type == 'doral_academy':
return self._parse_doral_academy(text)
else:
return self._parse_miami_dade(text)
def _identify_transcript_type(self, text: str) -> str:
"""Identify which type of transcript we're processing"""
if re.search(r'Sample OFFICIAL HIGH SCHOOL TRANSCRIPT', text):
return 'homeschool'
elif re.search(r'DORAL ACADEMY HIGH SCHOOL', text):
return 'doral_academy'
return 'miami_dade'
def _parse_homeschool(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse homeschool transcript format"""
courses = []
current_grade = None
current_year = None
# Extract student info
student_info = {}
name_match = re.search(r'Student Name:\s*(.+)\s*SSN:', text)
if name_match:
student_info['name'] = name_match.group(1).strip()
# Process each line
for line in text.split('\n'):
# Check for grade level header
grade_match = re.match(r'^\|?\s*(\d+th Grade)\s*\|.*(\d{4}-\d{4})', line)
if grade_match:
current_grade = grade_match.group(1)
current_year = grade_match.group(2)
continue
# Course line pattern
course_match = re.match(
r'^\|?\s*([^\|]+?)\s*\|\s*([A-Z][+*]?)\s*\|\s*([^\|]+)\s*\|\s*(\d+\.?\d*)\s*\|\s*(\d+)',
line
)
if course_match and current_grade:
course_name = course_match.group(1).strip()
# Clean course names that start with | or have extra spaces
course_name = re.sub(r'^\|?\s*', '', course_name)
courses.append({
'name': course_name,
'grade_level': current_grade,
'school_year': current_year,
'grade': course_match.group(2),
'credit_type': course_match.group(3).strip(),
'credits': float(course_match.group(4)),
'quality_points': int(course_match.group(5)),
'transcript_type': 'homeschool'
})
# Extract GPA information from homeschool transcript
gpa_data = {}
gpa_match = re.search(r'Cum\. GPA\s*\|\s*([\d\.]+)', text)
if gpa_match:
gpa_data['unweighted'] = gpa_match.group(1)
gpa_data['weighted'] = gpa_match.group(1) # Homeschool often has same weighted/unweighted
return {
'student_info': student_info,
'courses': {'All': courses}, # Homeschool doesn't separate by grade in same way
'gpa': gpa_data,
'grade_level': current_grade.replace('th Grade', '') if current_grade else "Unknown"
}
def _parse_doral_academy(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse Doral Academy specific format"""
courses = []
# Extract student info
student_info = {}
name_match = re.search(r'LEGAL NAME:\s*([^\n]+)', text)
if name_match:
student_info['name'] = name_match.group(1).strip()
# Extract school year information
year_pattern = re.compile(r'YEAR:\s*(\d{4}-\d{4})\s*GRADE LEVEL:\s*(\d{2})', re.MULTILINE)
year_matches = year_pattern.finditer(text)
# Create mapping of grade levels to years
grade_year_map = {}
for match in year_matches:
grade_year_map[match.group(2)] = match.group(1)
# Course pattern for Doral Academy
course_pattern = re.compile(
r'(\d)\s+(\d{7})\s+([^\n]+?)\s+([A-Z]{2})\s+([A-Z])\s+([A-Z])\s+([A-Z])\s+(\d\.\d{2})\s+(\d\.\d{2})',
re.MULTILINE
)
courses_by_grade = defaultdict(list)
for match in course_pattern.finditer(text):
grade_level_num = match.group(1)
grade_level = self.grade_level_map.get(grade_level_num, f"Grade {grade_level_num}")
school_year = grade_year_map.get(grade_level_num, "Unknown")
course_info = {
'course_code': match.group(2),
'name': match.group(3).strip(),
'subject_area': match.group(4),
'grade': match.group(5),
'inclusion_status': match.group(6),
'credit_status': match.group(7),
'credits_attempted': float(match.group(8)),
'credits': float(match.group(9)),
'grade_level': grade_level,
'school_year': school_year,
'transcript_type': 'doral_academy'
}
courses_by_grade[grade_level_num].append(course_info)
# Extract GPA information from Doral Academy transcript
gpa_data = {}
unweighted_match = re.search(r'Un-weighted GPA\s*([\d\.]+)', text)
weighted_match = re.search(r'Weighted GPA\s*([\d\.]+)', text)
if unweighted_match:
gpa_data['unweighted'] = unweighted_match.group(1)
if weighted_match:
gpa_data['weighted'] = weighted_match.group(1)
# Extract current grade level
grade_level = "12" if re.search(r'GRADE LEVEL:\s*12', text) else "Unknown"
return {
'student_info': student_info,
'courses': dict(courses_by_grade),
'gpa': gpa_data,
'grade_level': grade_level
}
def _parse_miami_dade(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse standard Miami-Dade format"""
courses = []
courses_by_grade = defaultdict(list)
# Extract student info
student_info = {}
name_match = re.search(r'0783977 - ([^,]+),\s*([^\n]+)', text)
if name_match:
student_info['name'] = f"{name_match.group(2)} {name_match.group(1)}"
# Course pattern for Miami-Dade
course_pattern = re.compile(
r'([A-Z]-[A-Za-z\s&]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([A-Z]?)\s*\|\s*([A-Z]?)\s*\|\s*([^\|]+)',
re.MULTILINE
)
for match in course_pattern.finditer(text):
grade_level = self.grade_level_map.get(match.group(3), match.group(3))
credits = match.group(10).strip()
course_info = {
'requirement_category': match.group(1).strip(),
'school_year': match.group(2),
'grade_level': grade_level if isinstance(grade_level, str) else f"Grade {match.group(3)}",
'course_code': match.group(4).strip(),
'name': match.group(5).strip(),
'term': match.group(6).strip(),
'district_number': match.group(7).strip(),
'grade': match.group(8),
'inclusion_status': match.group(9),
'credits': 0.0 if 'inProgress' in credits else float(credits.replace(' ', '')),
'transcript_type': 'miami_dade'
}
courses_by_grade[match.group(3)].append(course_info)
# Extract GPA information
gpa_data = {
'weighted': extract_gpa(text, 'Weighted GPA'),
'unweighted': extract_gpa(text, 'Un-weighted GPA')
}
# Extract current grade level
grade_level = re.search(r'Current Grade:\s*(\d+)', text).group(1) if re.search(r'Current Grade:\s*(\d+)', text) else "Unknown"
return {
'student_info': student_info,
'courses': dict(courses_by_grade),
'gpa': gpa_data,
'grade_level': grade_level
}
def _compile_miami_dade_patterns(self):
return {
'student': re.compile(r'Current Grade:\s*(\d+).*YOG\s*(\d{4})'),
'course': re.compile(
r'([A-Z]-[A-Za-z\s&]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([A-Z]?)\s*\|\s*([A-Z]?)\s*\|\s*([^\|]+)',
re.MULTILINE
)
}
def _compile_homeschool_patterns(self):
return {
'student': re.compile(r'Student Name:\s*(.+)\s*SSN:'),
'course': re.compile(
r'^\|?\s*([^\|]+?)\s*\|\s*([A-Z][+*]?)\s*\|\s*([^\|]+)\s*\|\s*(\d+\.?\d*)\s*\|\s*(\d+)'
)
}
def _compile_doral_academy_patterns(self):
return {
'student': re.compile(r'LEGAL NAME:\s*([^\n]+)'),
'course': re.compile(
r'(\d)\s+(\d{7})\s+([^\n]+?)\s+([A-Z]{2})\s+([A-Z])\s+([A-Z])\s+([A-Z])\s+(\d\.\d{2})\s+(\d\.\d{2})',
re.MULTILINE
)
}
def extract_gpa(text, gpa_type):
pattern = rf'{gpa_type}\s*([\d\.]+)'
match = re.search(pattern, text)
return match.group(1) if match else "N/A"
def parse_transcript(file):
parser = UniversalTranscriptParser()
if file.name.endswith('.pdf'):
text = ''
with pdfplumber.open(file.name) as pdf:
for page in pdf.pages:
text += page.extract_text() or '' + '\n'
parsed_data = parser.parse_transcript(text)
# Only show GPA in the output
output_text = f"Transcript Processed Successfully!\n\n"
output_text += f"GPA Information:\n"
output_text += f"- Weighted: {parsed_data['gpa'].get('weighted', 'N/A')}\n"
output_text += f"- Unweighted: {parsed_data['gpa'].get('unweighted', 'N/A')}"
return output_text, parsed_data
else:
return "Unsupported file format (PDF only for transcript parsing)", None
# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
learning_style_options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your mind (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
def learning_style_quiz(*answers):
scores = {
"Visual": 0,
"Auditory": 0,
"Reading/Writing": 0,
"Kinesthetic": 0
}
for i, answer in enumerate(answers):
if answer == learning_style_options[i][0]:
scores["Reading/Writing"] += 1
elif answer == learning_style_options[i][1]:
scores["Auditory"] += 1
elif answer == learning_style_options[i][2]:
scores["Visual"] += 1
elif answer == learning_style_options[i][3]:
scores["Kinesthetic"] += 1
max_score = max(scores.values())
total_questions = len(learning_style_questions)
# Calculate percentages
percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
# Sort styles by score (descending)
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Prepare detailed results
result = "Your Learning Style Results:\n\n"
for style, score in sorted_styles:
result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
result += "\n"
# Determine primary and secondary styles
primary_styles = [style for style, score in scores.items() if score == max_score]
if len(primary_styles) == 1:
result += f"Your primary learning style is: {primary_styles[0]}\n\n"
if primary_styles[0] == "Visual":
result += "Tips for Visual Learners:\n"
result += "- Use color coding in your notes\n"
result += "- Create mind maps and diagrams\n"
result += "- Watch educational videos\n"
result += "- Use flashcards with images\n"
elif primary_styles[0] == "Auditory":
result += "Tips for Auditory Learners:\n"
result += "- Record lectures and listen to them\n"
result += "- Participate in study groups\n"
result += "- Explain concepts out loud to yourself\n"
result += "- Use rhymes or songs to remember information\n"
elif primary_styles[0] == "Reading/Writing":
result += "Tips for Reading/Writing Learners:\n"
result += "- Write detailed notes\n"
result += "- Create summaries in your own words\n"
result += "- Read textbooks and articles\n"
result += "- Make lists to organize information\n"
else: # Kinesthetic
result += "Tips for Kinesthetic Learners:\n"
result += "- Use hands-on activities\n"
result += "- Take frequent movement breaks\n"
result += "- Create physical models\n"
result += "- Associate information with physical actions\n"
else:
result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
result += "You may benefit from combining different learning approaches.\n"
return result
# ========== SAVE STUDENT PROFILE ==========
def save_profile(name, age, interests, transcript, learning_style,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog):
# Convert age to int if it's a numpy number (from gradio Number input)
age = int(age) if age else 0
favorites = {
"movie": movie,
"movie_reason": movie_reason,
"show": show,
"show_reason": show_reason,
"book": book,
"book_reason": book_reason,
"character": character,
"character_reason": character_reason
}
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript,
"learning_style": learning_style,
"favorites": favorites,
"blog": blog
}
os.makedirs("student_profiles", exist_ok=True)
json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
with open(json_path, "w") as f:
json.dump(data, f, indent=2)
markdown_summary = f"""### Student Profile: {name}
**Age:** {age}
**Interests:** {interests}
**Learning Style:** {learning_style}
#### GPA Information:
- Weighted: {transcript['gpa'].get('weighted', 'N/A')}
- Unweighted: {transcript['gpa'].get('unweighted', 'N/A')}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
return markdown_summary
# ========== AI TEACHING ASSISTANT ==========
def load_profile():
if not os.path.exists("student_profiles"):
return {}
files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
if files:
with open(os.path.join("student_profiles", files[0]), "r") as f:
return json.load(f)
return {}
def generate_response(message, history):
profile = load_profile()
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Get profile data
learning_style = profile.get("learning_style", "")
transcript = profile.get("transcript", {})
gpa = transcript.get("gpa", {})
courses = []
# Flatten all courses from all grades
if 'courses' in transcript:
if isinstance(transcript['courses'], dict):
for grade_courses in transcript['courses'].values():
courses.extend(grade_courses)
elif isinstance(transcript['courses'], list):
courses = transcript['courses']
# Common responses
greetings = ["hi", "hello", "hey"]
study_help = ["study", "learn", "prepare", "exam"]
grade_help = ["gpa", "grade point average", "grades"]
course_help = ["courses", "classes", "subjects"]
if any(greet in message.lower() for greet in greetings):
return f"Hello {profile.get('name', 'there')}! How can I help you today?"
elif any(word in message.lower() for word in grade_help):
return (f"Your GPA information:\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}")
elif any(word in message.lower() for word in study_help):
# Analyze course performance to give personalized advice
strong_subjects = [c['name'] for c in courses if 'grade' in c and c['grade'] in ['A', 'A+', 'B+']]
weak_subjects = [c['name'] for c in courses if 'grade' in c and c['grade'] in ['D', 'F']]
response = "Here are some personalized study tips:\n"
if strong_subjects:
response += f"\nYou're doing well in: {', '.join(strong_subjects[:3])}\n"
response += "β†’ Keep up the good work in these areas!\n"
if weak_subjects:
response += f"\nYou might want to focus more on: {', '.join(weak_subjects[:3])}\n"
response += "β†’ Consider getting extra help or tutoring\n"
# Add learning style specific tips
if "Visual" in learning_style:
response += "\nVisual Learner Tip: Try creating diagrams or mind maps\n"
elif "Auditory" in learning_style:
response += "\nAuditory Learner Tip: Record yourself explaining concepts\n"
elif "Reading/Writing" in learning_style:
response += "\nReading/Writing Tip: Write summaries in your own words\n"
elif "Kinesthetic" in learning_style:
response += "\nKinesthetic Tip: Use physical objects to demonstrate concepts\n"
return response
elif any(word in message.lower() for word in course_help):
if not courses:
return "No course information available."
# Group by subject area
subjects = defaultdict(list)
for course in courses:
if 'name' in course:
# Extract first word as subject area
subject = course['name'].split()[0]
subjects[subject].append(course)
response = "Your course subjects:\n"
for subject, subject_courses in subjects.items():
response += f"\n{subject} ({len(subject_courses)} courses)"
return response
elif "help" in message.lower():
return ("I can help with:\n"
"- Your GPA information\n"
"- Personalized study tips\n"
"- Course information\n"
"- Learning style recommendations")
else:
return ("I'm your personalized teaching assistant. "
"Ask me about your GPA, courses, or study tips!")
# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
with gr.Tab("Step 1: Upload Transcript"):
gr.Markdown("### Upload your transcript (PDF recommended)")
transcript_file = gr.File(label="Transcript file", file_types=[".pdf"])
transcript_output = gr.Textbox(label="Transcript Results", lines=5)
transcript_data = gr.State()
transcript_file.change(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
with gr.Tab("Step 2: Learning Style Quiz"):
gr.Markdown("### Learning Style Quiz (20 Questions)")
quiz_components = []
for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
learning_output = gr.Textbox(label="Your Learning Style", lines=15)
gr.Button("Submit Quiz").click(
fn=learning_style_quiz,
inputs=quiz_components,
outputs=learning_output
)
with gr.Tab("Step 3: Personal Questions"):
name = gr.Textbox(label="What's your name?")
age = gr.Number(label="How old are you?", precision=0)
interests = gr.Textbox(label="What are your interests?")
movie = gr.Textbox(label="Favorite movie?")
movie_reason = gr.Textbox(label="Why do you like that movie?")
show = gr.Textbox(label="Favorite TV show?")
show_reason = gr.Textbox(label="Why do you like that show?")
book = gr.Textbox(label="Favorite book?")
book_reason = gr.Textbox(label="Why do you like that book?")
character = gr.Textbox(label="Favorite character?")
character_reason = gr.Textbox(label="Why do you like that character?")
blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)
with gr.Tab("Step 4: Save & Review"):
output_summary = gr.Markdown()
save_btn = gr.Button("Save Profile")
save_btn.click(
fn=save_profile,
inputs=[name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text],
outputs=output_summary
)
with gr.Tab("πŸ€– AI Teaching Assistant"):
gr.Markdown("## Your Personalized Learning Assistant")
chatbot = gr.ChatInterface(
fn=generate_response,
examples=[
"What's my GPA?",
"How should I study for my classes?",
"What subjects am I taking?"
]
)
if __name__ == "__main__":
app.launch()