Spaces:
Runtime error
Runtime error
File size: 27,926 Bytes
0e95f56 66cb301 32164a9 66cb301 0e95f56 66cb301 32164a9 66cb301 32164a9 66cb301 0e95f56 6e6aad7 9abe9f0 85bd875 9abe9f0 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 32164a9 0e95f56 6e6aad7 32164a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# ========== DEPENDENCY MANAGEMENT ==========
import sys
import subprocess
import importlib
from datetime import datetime
required_packages = {
'gradio': 'gradio>=3.0',
'pandas': 'pandas',
'PyPDF2': 'PyPDF2',
'transformers': 'transformers',
'pdfplumber': 'pdfplumber'
}
def check_and_install_packages():
missing_packages = []
for import_name, pkg_name in required_packages.items():
try:
importlib.import_module(import_name)
except ImportError:
missing_packages.append(pkg_name)
if missing_packages:
print(f"Missing packages: {', '.join(missing_packages)}")
subprocess.check_call([sys.executable, "-m", "pip", "install", *missing_packages])
check_and_install_packages()
# ========== MAIN IMPORTS ==========
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from transformers import pipeline
from typing import List, Dict, Union
import pdfplumber
# ========== TRANSCRIPT PARSING ==========
class UniversalTranscriptParser:
def __init__(self):
self.patterns = {
'miami_dade': self._compile_miami_dade_patterns(),
'homeschool': self._compile_homeschool_patterns(),
'doral_academy': self._compile_doral_academy_patterns()
}
self.grade_level_map = {
'09': '9th Grade', '10': '10th Grade', '11': '11th Grade', '12': '12th Grade',
'07': '7th Grade', '08': '8th Grade', 'MA': 'Middle School'
}
def parse_transcript(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Determine transcript type and parse accordingly"""
transcript_type = self._identify_transcript_type(text)
if transcript_type == 'homeschool':
return self._parse_homeschool(text)
elif transcript_type == 'doral_academy':
return self._parse_doral_academy(text)
else:
return self._parse_miami_dade(text)
def _identify_transcript_type(self, text: str) -> str:
"""Identify which type of transcript we're processing"""
if re.search(r'Sample OFFICIAL HIGH SCHOOL TRANSCRIPT', text):
return 'homeschool'
elif re.search(r'DORAL ACADEMY HIGH SCHOOL', text):
return 'doral_academy'
return 'miami_dade'
def _parse_homeschool(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse homeschool transcript format"""
courses = []
current_grade = None
current_year = None
# Extract student info
student_info = {}
name_match = re.search(r'Student Name:\s*(.+)\s*SSN:', text)
if name_match:
student_info['name'] = name_match.group(1).strip()
# Process each line
for line in text.split('\n'):
# Check for grade level header
grade_match = re.match(r'^\|?\s*(\d+th Grade)\s*\|.*(\d{4}-\d{4})', line)
if grade_match:
current_grade = grade_match.group(1)
current_year = grade_match.group(2)
continue
# Course line pattern
course_match = re.match(
r'^\|?\s*([^\|]+?)\s*\|\s*([A-Z][+*]?)\s*\|\s*([^\|]+)\s*\|\s*(\d+\.?\d*)\s*\|\s*(\d+)',
line
)
if course_match and current_grade:
course_name = course_match.group(1).strip()
# Clean course names that start with | or have extra spaces
course_name = re.sub(r'^\|?\s*', '', course_name)
courses.append({
'name': course_name,
'grade_level': current_grade,
'school_year': current_year,
'grade': course_match.group(2),
'credit_type': course_match.group(3).strip(),
'credits': float(course_match.group(4)),
'quality_points': int(course_match.group(5)),
'transcript_type': 'homeschool'
})
# Extract GPA information from homeschool transcript
gpa_data = {}
gpa_match = re.search(r'Cum\. GPA\s*\|\s*([\d\.]+)', text)
if gpa_match:
gpa_data['unweighted'] = gpa_match.group(1)
gpa_data['weighted'] = gpa_match.group(1) # Homeschool often has same weighted/unweighted
return {
'student_info': student_info,
'courses': {'All': courses}, # Homeschool doesn't separate by grade in same way
'gpa': gpa_data,
'grade_level': current_grade.replace('th Grade', '') if current_grade else "Unknown"
}
def _parse_doral_academy(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse Doral Academy specific format"""
courses = []
# Extract student info
student_info = {}
name_match = re.search(r'LEGAL NAME:\s*([^\n]+)', text)
if name_match:
student_info['name'] = name_match.group(1).strip()
# Extract school year information
year_pattern = re.compile(r'YEAR:\s*(\d{4}-\d{4})\s*GRADE LEVEL:\s*(\d{2})', re.MULTILINE)
year_matches = year_pattern.finditer(text)
# Create mapping of grade levels to years
grade_year_map = {}
for match in year_matches:
grade_year_map[match.group(2)] = match.group(1)
# Course pattern for Doral Academy
course_pattern = re.compile(
r'(\d)\s+(\d{7})\s+([^\n]+?)\s+([A-Z]{2})\s+([A-Z])\s+([A-Z])\s+([A-Z])\s+(\d\.\d{2})\s+(\d\.\d{2})',
re.MULTILINE
)
courses_by_grade = defaultdict(list)
for match in course_pattern.finditer(text):
grade_level_num = match.group(1)
grade_level = self.grade_level_map.get(grade_level_num, f"Grade {grade_level_num}")
school_year = grade_year_map.get(grade_level_num, "Unknown")
course_info = {
'course_code': match.group(2),
'name': match.group(3).strip(),
'subject_area': match.group(4),
'grade': match.group(5),
'inclusion_status': match.group(6),
'credit_status': match.group(7),
'credits_attempted': float(match.group(8)),
'credits': float(match.group(9)),
'grade_level': grade_level,
'school_year': school_year,
'transcript_type': 'doral_academy'
}
courses_by_grade[grade_level_num].append(course_info)
# Extract GPA information from Doral Academy transcript
gpa_data = {}
unweighted_match = re.search(r'Un-weighted GPA\s*([\d\.]+)', text)
weighted_match = re.search(r'Weighted GPA\s*([\d\.]+)', text)
if unweighted_match:
gpa_data['unweighted'] = unweighted_match.group(1)
if weighted_match:
gpa_data['weighted'] = weighted_match.group(1)
# Extract current grade level
grade_level = "12" if re.search(r'GRADE LEVEL:\s*12', text) else "Unknown"
return {
'student_info': student_info,
'courses': dict(courses_by_grade),
'gpa': gpa_data,
'grade_level': grade_level
}
def _parse_miami_dade(self, text: str) -> Dict[str, Union[Dict, List[Dict]]]:
"""Parse standard Miami-Dade format"""
courses = []
courses_by_grade = defaultdict(list)
# Extract student info
student_info = {}
name_match = re.search(r'0783977 - ([^,]+),\s*([^\n]+)', text)
if name_match:
student_info['name'] = f"{name_match.group(2)} {name_match.group(1)}"
# Course pattern for Miami-Dade
course_pattern = re.compile(
r'([A-Z]-[A-Za-z\s&]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([A-Z]?)\s*\|\s*([A-Z]?)\s*\|\s*([^\|]+)',
re.MULTILINE
)
for match in course_pattern.finditer(text):
grade_level = self.grade_level_map.get(match.group(3), match.group(3))
credits = match.group(10).strip()
course_info = {
'requirement_category': match.group(1).strip(),
'school_year': match.group(2),
'grade_level': grade_level if isinstance(grade_level, str) else f"Grade {match.group(3)}",
'course_code': match.group(4).strip(),
'name': match.group(5).strip(),
'term': match.group(6).strip(),
'district_number': match.group(7).strip(),
'grade': match.group(8),
'inclusion_status': match.group(9),
'credits': 0.0 if 'inProgress' in credits else float(credits.replace(' ', '')),
'transcript_type': 'miami_dade'
}
courses_by_grade[match.group(3)].append(course_info)
# Extract GPA information
gpa_data = {
'weighted': extract_gpa(text, 'Weighted GPA'),
'unweighted': extract_gpa(text, 'Un-weighted GPA')
}
# Extract current grade level
grade_level = re.search(r'Current Grade:\s*(\d+)', text).group(1) if re.search(r'Current Grade:\s*(\d+)', text) else "Unknown"
return {
'student_info': student_info,
'courses': dict(courses_by_grade),
'gpa': gpa_data,
'grade_level': grade_level
}
def _compile_miami_dade_patterns(self):
return {
'student': re.compile(r'Current Grade:\s*(\d+).*YOG\s*(\d{4})'),
'course': re.compile(
r'([A-Z]-[A-Za-z\s&]+)\s*\|\s*(\d{4}-\d{4})\s*\|\s*(\d{2})\s*\|\s*([A-Z0-9]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([^\|]+)\s*\|\s*([A-Z]?)\s*\|\s*([A-Z]?)\s*\|\s*([^\|]+)',
re.MULTILINE
)
}
def _compile_homeschool_patterns(self):
return {
'student': re.compile(r'Student Name:\s*(.+)\s*SSN:'),
'course': re.compile(
r'^\|?\s*([^\|]+?)\s*\|\s*([A-Z][+*]?)\s*\|\s*([^\|]+)\s*\|\s*(\d+\.?\d*)\s*\|\s*(\d+)'
)
}
def _compile_doral_academy_patterns(self):
return {
'student': re.compile(r'LEGAL NAME:\s*([^\n]+)'),
'course': re.compile(
r'(\d)\s+(\d{7})\s+([^\n]+?)\s+([A-Z]{2})\s+([A-Z])\s+([A-Z])\s+([A-Z])\s+(\d\.\d{2})\s+(\d\.\d{2})',
re.MULTILINE
)
}
def extract_gpa(text, gpa_type):
pattern = rf'{gpa_type}\s*([\d\.]+)'
match = re.search(pattern, text)
return match.group(1) if match else "N/A"
def parse_transcript(file):
parser = UniversalTranscriptParser()
if file.name.endswith('.pdf'):
text = ''
with pdfplumber.open(file.name) as pdf:
for page in pdf.pages:
text += page.extract_text() or '' + '\n'
parsed_data = parser.parse_transcript(text)
# Only show GPA in the output
output_text = f"Transcript Processed Successfully!\n\n"
output_text += f"GPA Information:\n"
output_text += f"- Weighted: {parsed_data['gpa'].get('weighted', 'N/A')}\n"
output_text += f"- Unweighted: {parsed_data['gpa'].get('unweighted', 'N/A')}"
return output_text, parsed_data
else:
return "Unsupported file format (PDF only for transcript parsing)", None
# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
learning_style_options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your mind (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
def learning_style_quiz(*answers):
scores = {
"Visual": 0,
"Auditory": 0,
"Reading/Writing": 0,
"Kinesthetic": 0
}
for i, answer in enumerate(answers):
if answer == learning_style_options[i][0]:
scores["Reading/Writing"] += 1
elif answer == learning_style_options[i][1]:
scores["Auditory"] += 1
elif answer == learning_style_options[i][2]:
scores["Visual"] += 1
elif answer == learning_style_options[i][3]:
scores["Kinesthetic"] += 1
max_score = max(scores.values())
total_questions = len(learning_style_questions)
# Calculate percentages
percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
# Sort styles by score (descending)
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Prepare detailed results
result = "Your Learning Style Results:\n\n"
for style, score in sorted_styles:
result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
result += "\n"
# Determine primary and secondary styles
primary_styles = [style for style, score in scores.items() if score == max_score]
if len(primary_styles) == 1:
result += f"Your primary learning style is: {primary_styles[0]}\n\n"
if primary_styles[0] == "Visual":
result += "Tips for Visual Learners:\n"
result += "- Use color coding in your notes\n"
result += "- Create mind maps and diagrams\n"
result += "- Watch educational videos\n"
result += "- Use flashcards with images\n"
elif primary_styles[0] == "Auditory":
result += "Tips for Auditory Learners:\n"
result += "- Record lectures and listen to them\n"
result += "- Participate in study groups\n"
result += "- Explain concepts out loud to yourself\n"
result += "- Use rhymes or songs to remember information\n"
elif primary_styles[0] == "Reading/Writing":
result += "Tips for Reading/Writing Learners:\n"
result += "- Write detailed notes\n"
result += "- Create summaries in your own words\n"
result += "- Read textbooks and articles\n"
result += "- Make lists to organize information\n"
else: # Kinesthetic
result += "Tips for Kinesthetic Learners:\n"
result += "- Use hands-on activities\n"
result += "- Take frequent movement breaks\n"
result += "- Create physical models\n"
result += "- Associate information with physical actions\n"
else:
result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
result += "You may benefit from combining different learning approaches.\n"
return result
# ========== SAVE STUDENT PROFILE ==========
def save_profile(name, age, interests, transcript, learning_style,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog):
# Convert age to int if it's a numpy number (from gradio Number input)
age = int(age) if age else 0
favorites = {
"movie": movie,
"movie_reason": movie_reason,
"show": show,
"show_reason": show_reason,
"book": book,
"book_reason": book_reason,
"character": character,
"character_reason": character_reason
}
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript,
"learning_style": learning_style,
"favorites": favorites,
"blog": blog
}
os.makedirs("student_profiles", exist_ok=True)
json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
with open(json_path, "w") as f:
json.dump(data, f, indent=2)
markdown_summary = f"""### Student Profile: {name}
**Age:** {age}
**Interests:** {interests}
**Learning Style:** {learning_style}
#### GPA Information:
- Weighted: {transcript['gpa'].get('weighted', 'N/A')}
- Unweighted: {transcript['gpa'].get('unweighted', 'N/A')}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
return markdown_summary
# ========== AI TEACHING ASSISTANT ==========
def load_profile():
if not os.path.exists("student_profiles"):
return {}
files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
if files:
with open(os.path.join("student_profiles", files[0]), "r") as f:
return json.load(f)
return {}
def generate_response(message, history):
profile = load_profile()
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Get profile data
learning_style = profile.get("learning_style", "")
transcript = profile.get("transcript", {})
gpa = transcript.get("gpa", {})
courses = []
# Flatten all courses from all grades
if 'courses' in transcript:
if isinstance(transcript['courses'], dict):
for grade_courses in transcript['courses'].values():
courses.extend(grade_courses)
elif isinstance(transcript['courses'], list):
courses = transcript['courses']
# Common responses
greetings = ["hi", "hello", "hey"]
study_help = ["study", "learn", "prepare", "exam"]
grade_help = ["gpa", "grade point average", "grades"]
course_help = ["courses", "classes", "subjects"]
if any(greet in message.lower() for greet in greetings):
return f"Hello {profile.get('name', 'there')}! How can I help you today?"
elif any(word in message.lower() for word in grade_help):
return (f"Your GPA information:\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}")
elif any(word in message.lower() for word in study_help):
# Analyze course performance to give personalized advice
strong_subjects = [c['name'] for c in courses if 'grade' in c and c['grade'] in ['A', 'A+', 'B+']]
weak_subjects = [c['name'] for c in courses if 'grade' in c and c['grade'] in ['D', 'F']]
response = "Here are some personalized study tips:\n"
if strong_subjects:
response += f"\nYou're doing well in: {', '.join(strong_subjects[:3])}\n"
response += "β Keep up the good work in these areas!\n"
if weak_subjects:
response += f"\nYou might want to focus more on: {', '.join(weak_subjects[:3])}\n"
response += "β Consider getting extra help or tutoring\n"
# Add learning style specific tips
if "Visual" in learning_style:
response += "\nVisual Learner Tip: Try creating diagrams or mind maps\n"
elif "Auditory" in learning_style:
response += "\nAuditory Learner Tip: Record yourself explaining concepts\n"
elif "Reading/Writing" in learning_style:
response += "\nReading/Writing Tip: Write summaries in your own words\n"
elif "Kinesthetic" in learning_style:
response += "\nKinesthetic Tip: Use physical objects to demonstrate concepts\n"
return response
elif any(word in message.lower() for word in course_help):
if not courses:
return "No course information available."
# Group by subject area
subjects = defaultdict(list)
for course in courses:
if 'name' in course:
# Extract first word as subject area
subject = course['name'].split()[0]
subjects[subject].append(course)
response = "Your course subjects:\n"
for subject, subject_courses in subjects.items():
response += f"\n{subject} ({len(subject_courses)} courses)"
return response
elif "help" in message.lower():
return ("I can help with:\n"
"- Your GPA information\n"
"- Personalized study tips\n"
"- Course information\n"
"- Learning style recommendations")
else:
return ("I'm your personalized teaching assistant. "
"Ask me about your GPA, courses, or study tips!")
# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
with gr.Tab("Step 1: Upload Transcript"):
gr.Markdown("### Upload your transcript (PDF recommended)")
transcript_file = gr.File(label="Transcript file", file_types=[".pdf"])
transcript_output = gr.Textbox(label="Transcript Results", lines=5)
transcript_data = gr.State()
transcript_file.change(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
with gr.Tab("Step 2: Learning Style Quiz"):
gr.Markdown("### Learning Style Quiz (20 Questions)")
quiz_components = []
for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
learning_output = gr.Textbox(label="Your Learning Style", lines=15)
gr.Button("Submit Quiz").click(
fn=learning_style_quiz,
inputs=quiz_components,
outputs=learning_output
)
with gr.Tab("Step 3: Personal Questions"):
name = gr.Textbox(label="What's your name?")
age = gr.Number(label="How old are you?", precision=0)
interests = gr.Textbox(label="What are your interests?")
movie = gr.Textbox(label="Favorite movie?")
movie_reason = gr.Textbox(label="Why do you like that movie?")
show = gr.Textbox(label="Favorite TV show?")
show_reason = gr.Textbox(label="Why do you like that show?")
book = gr.Textbox(label="Favorite book?")
book_reason = gr.Textbox(label="Why do you like that book?")
character = gr.Textbox(label="Favorite character?")
character_reason = gr.Textbox(label="Why do you like that character?")
blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)
with gr.Tab("Step 4: Save & Review"):
output_summary = gr.Markdown()
save_btn = gr.Button("Save Profile")
save_btn.click(
fn=save_profile,
inputs=[name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text],
outputs=output_summary
)
with gr.Tab("π€ AI Teaching Assistant"):
gr.Markdown("## Your Personalized Learning Assistant")
chatbot = gr.ChatInterface(
fn=generate_response,
examples=[
"What's my GPA?",
"How should I study for my classes?",
"What subjects am I taking?"
]
)
if __name__ == "__main__":
app.launch()
|