Final_project / app.py
Dannyar608's picture
Update app.py
2c68bd8 verified
raw
history blame
46 kB
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
# ========== UTILITY FUNCTIONS ==========
def sanitize_input(text: str) -> str:
"""Sanitize user input to prevent XSS and injection attacks."""
return html.escape(text.strip())
def validate_age(age: Union[int, float, str]) -> int:
"""Validate and convert age input."""
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise gr.Error(f"Age must be between {MIN_AGE} and {MAX_AGE}")
return age_int
except (ValueError, TypeError):
raise gr.Error("Please enter a valid age number")
def validate_file(file_obj) -> None:
"""Validate uploaded file."""
if not file_obj:
raise gr.Error("No file uploaded")
if not any(file_obj.name.endswith(ext) for ext in ALLOWED_FILE_TYPES):
raise gr.Error(f"Only {', '.join(ALLOWED_FILE_TYPES)} files are allowed")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB
if file_size > MAX_FILE_SIZE_MB:
raise gr.Error(f"File size must be less than {MAX_FILE_SIZE_MB}MB")
# ========== TRANSCRIPT PARSING ==========
def extract_gpa(text: str, gpa_type: str) -> str:
"""Extract GPA information from text with validation."""
pattern = rf'{gpa_type}\s*([\d\.]+)'
match = re.search(pattern, text)
if not match:
return "N/A"
gpa_value = match.group(1)
try:
gpa_float = float(gpa_value)
if not 0.0 <= gpa_float <= 5.0: # Assuming 5.0 is max for weighted GPA
return "Invalid GPA"
return gpa_value
except ValueError:
return "N/A"
def extract_courses_from_table(text: str) -> Dict[str, List[Dict]]:
"""Extract course information with multiple pattern fallbacks."""
# Primary pattern with strict formatting
primary_pattern = re.compile(
r'(\d{4}-\d{4})\s*' # School year
r'\|?\s*(\d+)\s*' # Grade level
r'\|?\s*([A-Z0-9]+)\s*' # Course code
r'\|?\s*([^\|]+?)\s*' # Course name
r'(?:\|\s*[^\|]*){2}' # Skip Term and DstNumber
r'\|\s*([A-FW]?)\s*' # Grade (FG column)
r'(?:\|\s*[^\|]*)' # Skip Incl column
r'\|\s*([\d\.]+|inProgress)' # Credits
)
# Fallback pattern for less structured data
fallback_pattern = re.compile(
r'(\d{4}-\d{4})\s+' # School year
r'(\d+)\s+' # Grade level
r'([A-Z0-9]+)\s+' # Course code
r'(.+?)\s+' # Course name
r'([A-FW]?)\s*' # Grade
r'([\d\.]+|inProgress)' # Credits
)
courses_by_grade = defaultdict(list)
for pattern in [primary_pattern, fallback_pattern]:
for match in re.finditer(pattern, text):
year_range, grade_level, course_code, course_name, grade, credits = match.groups()
# Clean and format course information
course_name = course_name.strip()
if 'DE:' in course_name:
course_name = course_name.replace('DE:', 'Dual Enrollment:')
if 'AP' in course_name and 'AP ' not in course_name:
course_name = course_name.replace('AP', 'AP ')
course_info = {
'name': f"{course_code} {course_name}",
'year': year_range,
'credits': credits if credits != 'inProgress' else 'In Progress'
}
if grade and grade.strip():
course_info['grade'] = grade.strip()
courses_by_grade[grade_level].append(course_info)
if courses_by_grade: # If we found matches with this pattern, stop
break
return courses_by_grade
def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
"""Parse transcript file with robust error handling."""
try:
validate_file(file_obj)
text = ''
try:
reader = PdfReader(file_obj)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + '\n'
except Exception as e:
raise gr.Error(f"Error processing PDF: {str(e)}")
if not text.strip():
raise gr.Error("No text could be extracted from the PDF")
# Extract GPA data with validation
gpa_data = {
'weighted': extract_gpa(text, 'Weighted GPA'),
'unweighted': extract_gpa(text, 'Un-weighted GPA')
}
# Extract grade level with fallback
grade_match = re.search(r'Current Grade:\s*(\d+)', text) or \
re.search(r'Grade\s*:\s*(\d+)', text) or \
re.search(r'Grade\s+(\d+)', text)
grade_level = grade_match.group(1) if grade_match else "Unknown"
courses_by_grade = extract_courses_from_table(text)
# Format output text
output_text = f"Student Transcript Summary\n{'='*40}\n"
output_text += f"Current Grade Level: {grade_level}\n"
output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
output_text += "Course History:\n{'='*40}\n"
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
for course in courses_by_grade[grade]:
output_text += f"- {course['name']}"
if 'grade' in course and course['grade']:
output_text += f" (Grade: {course['grade']})"
if 'credits' in course:
output_text += f" | Credits: {course['credits']}"
output_text += f" | Year: {course['year']}\n"
return output_text, {
"gpa": gpa_data,
"grade_level": grade_level,
"courses": dict(courses_by_grade)
}
except Exception as e:
return f"Error processing transcript: {str(e)}", None
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
self.options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
self.learning_styles = {
"Visual": {
"description": "Visual learners prefer using images, diagrams, and spatial understanding.",
"tips": [
"Use color coding in your notes",
"Create mind maps and diagrams",
"Watch educational videos",
"Use flashcards with images",
"Highlight important information in different colors"
]
},
"Auditory": {
"description": "Auditory learners learn best through listening and speaking.",
"tips": [
"Record lectures and listen to them",
"Participate in study groups",
"Explain concepts out loud to yourself",
"Use rhymes or songs to remember information",
"Listen to educational podcasts"
]
},
"Reading/Writing": {
"description": "These learners prefer information displayed as words.",
"tips": [
"Write detailed notes",
"Create summaries in your own words",
"Read textbooks and articles",
"Make lists to organize information",
"Rewrite your notes to reinforce learning"
]
},
"Kinesthetic": {
"description": "Kinesthetic learners learn through movement and hands-on activities.",
"tips": [
"Use hands-on activities",
"Take frequent movement breaks",
"Create physical models",
"Associate information with physical actions",
"Study while walking or pacing"
]
}
}
def evaluate_quiz(self, answers: List[str]) -> str:
"""Evaluate quiz answers and generate results."""
if len(answers) != len(self.questions):
raise gr.Error("Not all questions were answered")
scores = {style: 0 for style in self.learning_styles}
for i, answer in enumerate(answers):
if not answer:
continue # Skip unanswered questions
for j, style in enumerate(self.learning_styles):
if answer == self.options[i][j]:
scores[style] += 1
break
total_answered = sum(1 for ans in answers if ans)
if total_answered == 0:
raise gr.Error("No answers provided")
percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Generate results report
result = "## Your Learning Style Results\n\n"
result += "### Scores:\n"
for style, score in sorted_styles:
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
max_score = max(scores.values())
primary_styles = [style for style, score in scores.items() if score == max_score]
result += "\n### Analysis:\n"
if len(primary_styles) == 1:
primary_style = primary_styles[0]
style_info = self.learning_styles[primary_style]
result += f"Your primary learning style is **{primary_style}**\n\n"
result += f"**{primary_style} Characteristics**:\n"
result += f"{style_info['description']}\n\n"
result += "**Recommended Study Strategies**:\n"
for tip in style_info['tips']:
result += f"- {tip}\n"
# Add complementary strategies
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
for tip in self.learning_styles[complementary]['tips'][:3]:
result += f"- {tip}\n"
else:
result += "You have multiple strong learning styles:\n"
for style in primary_styles:
result += f"- **{style}**\n"
result += "\n**Combined Learning Strategies**:\n"
result += "You may benefit from combining different learning approaches:\n"
for style in primary_styles:
result += f"\n**{style}** techniques:\n"
for tip in self.learning_styles[style]['tips'][:2]:
result += f"- {tip}\n"
return result
# Initialize quiz instance
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True)
def save_profile(self, name: str, age: Union[int, str], interests: str,
transcript: Dict, learning_style: str,
movie: str, movie_reason: str, show: str, show_reason: str,
book: str, book_reason: str, character: str, character_reason: str,
blog: str) -> str:
"""Save student profile with validation."""
try:
# Validate required fields
if not name.strip():
raise gr.Error("Name is required")
name = sanitize_input(name)
age = validate_age(age)
interests = sanitize_input(interests)
# Prepare favorites data
favorites = {
"movie": sanitize_input(movie),
"movie_reason": sanitize_input(movie_reason),
"show": sanitize_input(show),
"show_reason": sanitize_input(show_reason),
"book": sanitize_input(book),
"book_reason": sanitize_input(book_reason),
"character": sanitize_input(character),
"character_reason": sanitize_input(character_reason)
}
# Prepare full profile data
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript if transcript else {},
"learning_style": learning_style if learning_style else "Not assessed",
"favorites": favorites,
"blog": sanitize_input(blog) if blog else ""
}
# Save to JSON file
filename = f"{name.replace(' ', '_')}_profile.json"
filepath = self.profiles_dir / filename
with open(filepath, "w", encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
return self._generate_profile_summary(data)
except Exception as e:
raise gr.Error(f"Error saving profile: {str(e)}")
def load_profile(self, name: str = None) -> Dict:
"""Load profile by name or return the first one found."""
try:
profiles = list(self.profiles_dir.glob("*.json"))
if not profiles:
return {}
if name:
# Find profile by name
name = name.replace(" ", "_")
profile_file = self.profiles_dir / f"{name}_profile.json"
if not profile_file.exists():
raise gr.Error(f"No profile found for {name}")
else:
# Load the first profile found
profile_file = profiles[0]
with open(profile_file, "r", encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Error loading profile: {str(e)}")
return {}
def list_profiles(self) -> List[str]:
"""List all available profile names."""
profiles = list(self.profiles_dir.glob("*.json"))
return [p.stem.replace("_profile", "").replace("_", " ") for p in profiles]
def _generate_profile_summary(self, data: Dict) -> str:
"""Generate markdown summary of the profile."""
transcript = data.get("transcript", {})
favorites = data.get("favorites", {})
markdown = f"""## Student Profile: {data['name']}
### Basic Information
- **Age:** {data['age']}
- **Interests:** {data['interests']}
- **Learning Style:** {data['learning_style'].split('##')[0].strip()}
### Academic Information
{self._format_transcript(transcript)}
### Favorites
- **Movie:** {favorites.get('movie', 'Not specified')}
*Reason:* {favorites.get('movie_reason', 'Not specified')}
- **TV Show:** {favorites.get('show', 'Not specified')}
*Reason:* {favorites.get('show_reason', 'Not specified')}
- **Book:** {favorites.get('book', 'Not specified')}
*Reason:* {favorites.get('book_reason', 'Not specified')}
- **Character:** {favorites.get('character', 'Not specified')}
*Reason:* {favorites.get('character_reason', 'Not specified')}
### Personal Blog
{data.get('blog', '_No blog provided_')}
"""
return markdown
def _format_transcript(self, transcript: Dict) -> str:
"""Format transcript data for display."""
if not transcript or "courses" not in transcript:
return "_No transcript information available_"
display = "#### Course History\n"
courses_by_grade = transcript["courses"]
if isinstance(courses_by_grade, dict):
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
display += f"\n**Grade {grade}**\n"
for course in courses_by_grade[grade]:
display += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course and course['grade']:
display += f" (Grade: {course['grade']})"
if 'credits' in course:
display += f" | Credits: {course['credits']}"
display += f" | Year: {course.get('year', 'N/A')}\n"
if 'gpa' in transcript:
gpa = transcript['gpa']
display += "\n**GPA**\n"
display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
return display
# Initialize profile manager
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.context_history = []
self.max_context_length = 5 # Keep last 5 exchanges for context
def generate_response(self, message: str, history: List[Tuple[str, str]]) -> str:
"""Generate personalized response based on student profile and context."""
try:
# Load profile (simplified - in real app would handle multiple profiles)
profile = profile_manager.load_profile()
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Update context history
self._update_context(message, history)
# Extract profile information
name = profile.get("name", "there")
learning_style = profile.get("learning_style", "")
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
gpa = profile.get("transcript", {}).get("gpa", {})
interests = profile.get("interests", "")
courses = profile.get("transcript", {}).get("courses", {})
favorites = profile.get("favorites", {})
# Process message with context
response = self._process_message(message, profile)
# Add follow-up suggestions
if "study" in message.lower() or "learn" in message.lower():
response += "\n\nWould you like me to suggest a study schedule based on your courses?"
elif "course" in message.lower() or "class" in message.lower():
response += "\n\nWould you like help finding resources for any of these courses?"
return response
except Exception as e:
print(f"Error generating response: {str(e)}")
return "I encountered an error processing your request. Please try again."
def _update_context(self, message: str, history: List[Tuple[str, str]]) -> None:
"""Maintain conversation context."""
self.context_history.append(("user", message))
if history:
for h in history[-self.max_context_length:]:
self.context_history.append(("user", h[0]))
self.context_history.append(("assistant", h[1]))
# Trim to maintain max context length
self.context_history = self.context_history[-(self.max_context_length*2):]
def _process_message(self, message: str, profile: Dict) -> str:
"""Process user message with profile context."""
message_lower = message.lower()
# Greetings
if any(greet in message_lower for greet in ["hi", "hello", "hey", "greetings"]):
return f"Hello {profile.get('name', 'there')}! How can I help you with your learning today?"
# Study help
study_words = ["study", "learn", "prepare", "exam", "test", "homework"]
if any(word in message_lower for word in study_words):
return self._generate_study_advice(profile)
# Grade help
grade_words = ["grade", "gpa", "score", "marks", "results"]
if any(word in message_lower for word in grade_words):
return self._generate_grade_advice(profile)
# Interest help
interest_words = ["interest", "hobby", "passion", "extracurricular"]
if any(word in message_lower for word in interest_words):
return self._generate_interest_advice(profile)
# Course help
course_words = ["courses", "classes", "transcript", "schedule", "subject"]
if any(word in message_lower for word in course_words):
return self._generate_course_advice(profile)
# Favorites
favorite_words = ["movie", "show", "book", "character", "favorite"]
if any(word in message_lower for word in favorite_words):
return self._generate_favorites_response(profile)
# General help
if "help" in message_lower:
return self._generate_help_response()
# Default response
return ("I'm your personalized teaching assistant. I can help with study tips, "
"grade information, course advice, and more. Try asking about how to "
"study effectively or about your course history.")
def _generate_study_advice(self, profile: Dict) -> str:
"""Generate study advice based on learning style."""
learning_style = profile.get("learning_style", "")
response = ""
if "Visual" in learning_style:
response = ("Based on your visual learning style, I recommend:\n"
"- Creating colorful mind maps or diagrams\n"
"- Using highlighters to color-code your notes\n"
"- Watching educational videos on the topics\n"
"- Creating flashcards with images\n\n")
elif "Auditory" in learning_style:
response = ("Based on your auditory learning style, I recommend:\n"
"- Recording your notes and listening to them\n"
"- Participating in study groups to discuss concepts\n"
"- Explaining the material out loud to yourself\n"
"- Finding podcasts or audio lectures on the topics\n\n")
elif "Reading/Writing" in learning_style:
response = ("Based on your reading/writing learning style, I recommend:\n"
"- Writing detailed summaries in your own words\n"
"- Creating organized outlines of the material\n"
"- Reading additional textbooks or articles\n"
"- Rewriting your notes to reinforce learning\n\n")
elif "Kinesthetic" in learning_style:
response = ("Based on your kinesthetic learning style, I recommend:\n"
"- Creating physical models or demonstrations\n"
"- Using hands-on activities to learn concepts\n"
"- Taking frequent movement breaks while studying\n"
"- Associating information with physical actions\n\n")
else:
response = ("Here are some general study tips:\n"
"- Use the Pomodoro technique (25 min study, 5 min break)\n"
"- Space out your study sessions over time\n"
"- Test yourself with practice questions\n"
"- Teach the material to someone else\n\n")
# Add time management advice
response += ("**Time Management Tips**:\n"
"- Create a study schedule and stick to it\n"
"- Prioritize difficult subjects when you're most alert\n"
"- Break large tasks into smaller, manageable chunks\n"
"- Set specific goals for each study session")
return response
def _generate_grade_advice(self, profile: Dict) -> str:
"""Generate response about grades and GPA."""
gpa = profile.get("transcript", {}).get("gpa", {})
courses = profile.get("transcript", {}).get("courses", {})
response = (f"Your GPA information:\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n")
# Identify any failing grades
weak_subjects = []
for grade_level, course_list in courses.items():
for course in course_list:
if course.get('grade', '').upper() in ['D', 'F']:
weak_subjects.append(course.get('name', 'Unknown course'))
if weak_subjects:
response += ("**Areas for Improvement**:\n"
f"You might want to focus on these subjects: {', '.join(weak_subjects)}\n\n")
response += ("**Grade Improvement Strategies**:\n"
"- Meet with your teachers to discuss your performance\n"
"- Identify specific areas where you lost points\n"
"- Create a targeted study plan for weak areas\n"
"- Practice with past exams or sample questions")
return response
def _generate_interest_advice(self, profile: Dict) -> str:
"""Generate response based on student interests."""
interests = profile.get("interests", "")
response = f"I see you're interested in: {interests}\n\n"
response += ("**Suggestions**:\n"
"- Look for clubs or extracurricular activities related to these interests\n"
"- Explore career paths that align with these interests\n"
"- Find online communities or forums about these topics\n"
"- Consider projects or independent study in these areas")
return response
def _generate_course_advice(self, profile: Dict) -> str:
"""Generate response about courses."""
courses = profile.get("transcript", {}).get("courses", {})
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
response = "Here's a summary of your courses:\n"
for grade in sorted(courses.keys(), key=lambda x: int(x) if x.isdigit() else x):
response += f"\n**Grade {grade}**:\n"
for course in courses[grade]:
response += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course:
response += f" (Grade: {course['grade']})"
response += "\n"
response += f"\nAs a grade {grade_level} student, you might want to:\n"
if grade_level in ["9", "10"]:
response += ("- Focus on building strong foundational skills\n"
"- Explore different subjects to find your interests\n"
"- Start thinking about college/career requirements")
elif grade_level in ["11", "12"]:
response += ("- Focus on courses relevant to your college/career goals\n"
"- Consider taking AP or advanced courses if available\n"
"- Ensure you're meeting graduation requirements")
return response
def _generate_favorites_response(self, profile: Dict) -> str:
"""Generate response about favorite items."""
favorites = profile.get("favorites", {})
response = "I see you enjoy:\n"
if favorites.get('movie'):
response += f"- Movie: {favorites['movie']} ({favorites.get('movie_reason', 'no reason provided')})\n"
if favorites.get('show'):
response += f"- TV Show: {favorites['show']} ({favorites.get('show_reason', 'no reason provided')})\n"
if favorites.get('book'):
response += f"- Book: {favorites['book']} ({favorites.get('book_reason', 'no reason provided')})\n"
if favorites.get('character'):
response += f"- Character: {favorites['character']} ({favorites.get('character_reason', 'no reason provided')})\n"
response += "\nThese preferences suggest you might enjoy:\n"
response += "- Similar books/movies in the same genre\n"
response += "- Creative projects related to these stories\n"
response += "- Analyzing themes or characters in your schoolwork"
return response
def _generate_help_response(self) -> str:
"""Generate help response with available commands."""
return ("""I can help with:
- **Study tips**: "How should I study for math?"
- **Grade information**: "What's my GPA?"
- **Course advice**: "Show me my course history"
- **Interest suggestions**: "What clubs match my interests?"
- **General advice**: "How can I improve my grades?"
Try asking about any of these topics!""")
# Initialize teaching assistant
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
# Custom CSS for better styling
app.css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
}
.tab {
padding: 20px;
border-radius: 8px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.progress-bar {
height: 5px;
background: linear-gradient(to right, #4CAF50, #8BC34A);
margin-bottom: 15px;
border-radius: 3px;
}
.quiz-question {
margin-bottom: 15px;
padding: 15px;
background: #f5f5f5;
border-radius: 5px;
}
"""
gr.Markdown("""
# Student Learning Assistant
**Your personalized education companion**
Complete each step to get customized learning recommendations.
""")
# Progress tracker
with gr.Row():
with gr.Column(scale=1):
step1 = gr.Button("1. Upload Transcript", variant="primary")
with gr.Column(scale=1):
step2 = gr.Button("2. Learning Style Quiz")
with gr.Column(scale=1):
step3 = gr.Button("3. Personal Questions")
with gr.Column(scale=1):
step4 = gr.Button("4. Save & Review")
with gr.Column(scale=1):
step5 = gr.Button("5. AI Assistant")
# Tab navigation logic
def navigate_to_tab(tab_index):
return {tab: gr.update(visible=(i == tab_index)) for i, tab in enumerate(tabs)}
# Main tabs
with gr.Tabs() as tabs:
# ===== TAB 1: Transcript Upload =====
with gr.Tab("Transcript Upload", id=0) as tab1:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Upload Your Transcript")
gr.Markdown("Upload a PDF of your academic transcript to analyze your courses and GPA.")
with gr.Group():
transcript_file = gr.File(
label="Transcript PDF",
file_types=ALLOWED_FILE_TYPES,
type="filepath"
)
upload_btn = gr.Button("Upload & Analyze", variant="primary")
gr.Markdown("**Note**: Your file is processed locally and not stored permanently.")
with gr.Column(scale=2):
transcript_output = gr.Textbox(
label="Transcript Analysis",
lines=20,
interactive=False
)
transcript_data = gr.State()
upload_btn.click(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
# ===== TAB 2: Learning Style Quiz =====
with gr.Tab("Learning Style Quiz", id=1) as tab2:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 2: Discover Your Learning Style")
gr.Markdown("Complete this 20-question quiz to identify whether you're a visual, auditory, reading/writing, or kinesthetic learner.")
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
quiz_submit = gr.Button("Submit Quiz", variant="primary")
with gr.Column(scale=2):
quiz_components = []
with gr.Accordion("Quiz Questions", open=True):
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
with gr.Group(elem_classes="quiz-question"):
q = gr.Radio(
options,
label=f"{i+1}. {question}",
show_label=True
)
quiz_components.append(q)
learning_output = gr.Markdown(
label="Your Learning Style Results",
visible=False
)
# Update progress bar as questions are answered
for component in quiz_components:
component.change(
fn=lambda *answers: {
progress: gr.HTML(
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
)
},
inputs=quiz_components,
outputs=progress
)
quiz_submit.click(
fn=learning_style_quiz.evaluate_quiz,
inputs=quiz_components,
outputs=learning_output
).then(
fn=lambda: gr.update(visible=True),
outputs=learning_output
)
# ===== TAB 3: Personal Questions =====
with gr.Tab("Personal Profile", id=2) as tab3:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 3: Tell Us About Yourself")
gr.Markdown("This information helps us provide personalized recommendations.")
with gr.Group():
name = gr.Textbox(label="Full Name", placeholder="Your name")
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
interests = gr.Textbox(
label="Your Interests/Hobbies",
placeholder="e.g., Science, Music, Sports, Art..."
)
gr.Markdown("### Favorites")
with gr.Group():
movie = gr.Textbox(label="Favorite Movie")
movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
show = gr.Textbox(label="Favorite TV Show")
show_reason = gr.Textbox(label="Why do you like it?", lines=2)
book = gr.Textbox(label="Favorite Book")
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
character = gr.Textbox(label="Favorite Character (from any story)")
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
with gr.Column(scale=1):
gr.Markdown("### Additional Information")
blog_checkbox = gr.Checkbox(
label="Would you like to write a short blog about your learning experiences?",
value=False
)
blog_text = gr.Textbox(
label="Your Learning Blog",
placeholder="Write about your learning journey, challenges, goals...",
lines=8,
visible=False
)
blog_checkbox.change(
lambda x: gr.update(visible=x),
inputs=blog_checkbox,
outputs=blog_text
)
# ===== TAB 4: Save & Review =====
with gr.Tab("Save Profile", id=3) as tab4:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 4: Review & Save Your Profile")
gr.Markdown("Verify your information before saving. You can return to previous steps to make changes.")
save_btn = gr.Button("Save Profile", variant="primary")
load_profile_dropdown = gr.Dropdown(
label="Or load existing profile",
choices=profile_manager.list_profiles(),
visible=bool(profile_manager.list_profiles())
)
load_btn = gr.Button("Load Profile", visible=bool(profile_manager.list_profiles()))
with gr.Column(scale=2):
output_summary = gr.Markdown(
"Your profile summary will appear here after saving.",
label="Profile Summary"
)
save_btn.click(
fn=profile_manager.save_profile,
inputs=[
name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text
],
outputs=output_summary
)
load_btn.click(
fn=lambda name: profile_manager.load_profile(name),
inputs=load_profile_dropdown,
outputs=output_summary
)
# ===== TAB 5: AI Teaching Assistant =====
with gr.Tab("AI Assistant", id=4) as tab5:
gr.Markdown("## Your Personalized Learning Assistant")
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
chatbot = gr.ChatInterface(
fn=teaching_assistant.generate_response,
examples=[
"How should I study for my next math test?",
"What's my current GPA?",
"Show me my course history",
"How can I improve my grades in science?",
"What study methods match my learning style?"
],
title="",
retry_btn=None,
undo_btn=None
)
# Tab navigation buttons
step1.click(
fn=lambda: navigate_to_tab(0),
outputs={tab: tab for tab in tabs}
)
step2.click(
fn=lambda: navigate_to_tab(1),
outputs={tab: tab for tab in tabs}
)
step3.click(
fn=lambda: navigate_to_tab(2),
outputs={tab: tab for tab in tabs}
)
step4.click(
fn=lambda: navigate_to_tab(3),
outputs={tab: tab for tab in tabs}
)
step5.click(
fn=lambda: navigate_to_tab(4),
outputs={tab: tab for tab in tabs}
)
return app
# Create the interface
app = create_interface()
# For Hugging Face Spaces deployment
if __name__ == "__main__":
app.launch()