Spaces:
Runtime error
Runtime error
File size: 45,975 Bytes
b57ed91 3e64737 2c68bd8 3e64737 ce1eb3c 66cb301 ce1eb3c 66cb301 6f8fb84 ce1eb3c 3e64737 ce1eb3c 66cb301 ce1eb3c 3e64737 ce1eb3c 3e64737 0e95f56 ce1eb3c 3e64737 0e95f56 ce1eb3c 0e95f56 ce1eb3c 0e95f56 3e64737 0e95f56 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 0e95f56 6f8fb84 ce1eb3c 0e95f56 ce1eb3c 6f8fb84 ce1eb3c 0e95f56 6f8fb84 ce1eb3c 0e95f56 ce1eb3c 6f8fb84 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 3e64737 ce1eb3c 3e64737 ce1eb3c 6f8fb84 ce1eb3c 431b892 ce1eb3c 431b892 ce1eb3c 431b892 ce1eb3c 431b892 ce1eb3c 3e64737 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 3e64737 6f8fb84 ce1eb3c 0ecc813 32164a9 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 3e64737 ce1eb3c 3e64737 6f8fb84 3e64737 ce1eb3c 3e64737 ce1eb3c 3e64737 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 0e95f56 ce1eb3c 2c68bd8 ce1eb3c 6e6aad7 2c68bd8 ce1eb3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
# ========== UTILITY FUNCTIONS ==========
def sanitize_input(text: str) -> str:
"""Sanitize user input to prevent XSS and injection attacks."""
return html.escape(text.strip())
def validate_age(age: Union[int, float, str]) -> int:
"""Validate and convert age input."""
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise gr.Error(f"Age must be between {MIN_AGE} and {MAX_AGE}")
return age_int
except (ValueError, TypeError):
raise gr.Error("Please enter a valid age number")
def validate_file(file_obj) -> None:
"""Validate uploaded file."""
if not file_obj:
raise gr.Error("No file uploaded")
if not any(file_obj.name.endswith(ext) for ext in ALLOWED_FILE_TYPES):
raise gr.Error(f"Only {', '.join(ALLOWED_FILE_TYPES)} files are allowed")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB
if file_size > MAX_FILE_SIZE_MB:
raise gr.Error(f"File size must be less than {MAX_FILE_SIZE_MB}MB")
# ========== TRANSCRIPT PARSING ==========
def extract_gpa(text: str, gpa_type: str) -> str:
"""Extract GPA information from text with validation."""
pattern = rf'{gpa_type}\s*([\d\.]+)'
match = re.search(pattern, text)
if not match:
return "N/A"
gpa_value = match.group(1)
try:
gpa_float = float(gpa_value)
if not 0.0 <= gpa_float <= 5.0: # Assuming 5.0 is max for weighted GPA
return "Invalid GPA"
return gpa_value
except ValueError:
return "N/A"
def extract_courses_from_table(text: str) -> Dict[str, List[Dict]]:
"""Extract course information with multiple pattern fallbacks."""
# Primary pattern with strict formatting
primary_pattern = re.compile(
r'(\d{4}-\d{4})\s*' # School year
r'\|?\s*(\d+)\s*' # Grade level
r'\|?\s*([A-Z0-9]+)\s*' # Course code
r'\|?\s*([^\|]+?)\s*' # Course name
r'(?:\|\s*[^\|]*){2}' # Skip Term and DstNumber
r'\|\s*([A-FW]?)\s*' # Grade (FG column)
r'(?:\|\s*[^\|]*)' # Skip Incl column
r'\|\s*([\d\.]+|inProgress)' # Credits
)
# Fallback pattern for less structured data
fallback_pattern = re.compile(
r'(\d{4}-\d{4})\s+' # School year
r'(\d+)\s+' # Grade level
r'([A-Z0-9]+)\s+' # Course code
r'(.+?)\s+' # Course name
r'([A-FW]?)\s*' # Grade
r'([\d\.]+|inProgress)' # Credits
)
courses_by_grade = defaultdict(list)
for pattern in [primary_pattern, fallback_pattern]:
for match in re.finditer(pattern, text):
year_range, grade_level, course_code, course_name, grade, credits = match.groups()
# Clean and format course information
course_name = course_name.strip()
if 'DE:' in course_name:
course_name = course_name.replace('DE:', 'Dual Enrollment:')
if 'AP' in course_name and 'AP ' not in course_name:
course_name = course_name.replace('AP', 'AP ')
course_info = {
'name': f"{course_code} {course_name}",
'year': year_range,
'credits': credits if credits != 'inProgress' else 'In Progress'
}
if grade and grade.strip():
course_info['grade'] = grade.strip()
courses_by_grade[grade_level].append(course_info)
if courses_by_grade: # If we found matches with this pattern, stop
break
return courses_by_grade
def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
"""Parse transcript file with robust error handling."""
try:
validate_file(file_obj)
text = ''
try:
reader = PdfReader(file_obj)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + '\n'
except Exception as e:
raise gr.Error(f"Error processing PDF: {str(e)}")
if not text.strip():
raise gr.Error("No text could be extracted from the PDF")
# Extract GPA data with validation
gpa_data = {
'weighted': extract_gpa(text, 'Weighted GPA'),
'unweighted': extract_gpa(text, 'Un-weighted GPA')
}
# Extract grade level with fallback
grade_match = re.search(r'Current Grade:\s*(\d+)', text) or \
re.search(r'Grade\s*:\s*(\d+)', text) or \
re.search(r'Grade\s+(\d+)', text)
grade_level = grade_match.group(1) if grade_match else "Unknown"
courses_by_grade = extract_courses_from_table(text)
# Format output text
output_text = f"Student Transcript Summary\n{'='*40}\n"
output_text += f"Current Grade Level: {grade_level}\n"
output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
output_text += "Course History:\n{'='*40}\n"
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
for course in courses_by_grade[grade]:
output_text += f"- {course['name']}"
if 'grade' in course and course['grade']:
output_text += f" (Grade: {course['grade']})"
if 'credits' in course:
output_text += f" | Credits: {course['credits']}"
output_text += f" | Year: {course['year']}\n"
return output_text, {
"gpa": gpa_data,
"grade_level": grade_level,
"courses": dict(courses_by_grade)
}
except Exception as e:
return f"Error processing transcript: {str(e)}", None
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
self.options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
self.learning_styles = {
"Visual": {
"description": "Visual learners prefer using images, diagrams, and spatial understanding.",
"tips": [
"Use color coding in your notes",
"Create mind maps and diagrams",
"Watch educational videos",
"Use flashcards with images",
"Highlight important information in different colors"
]
},
"Auditory": {
"description": "Auditory learners learn best through listening and speaking.",
"tips": [
"Record lectures and listen to them",
"Participate in study groups",
"Explain concepts out loud to yourself",
"Use rhymes or songs to remember information",
"Listen to educational podcasts"
]
},
"Reading/Writing": {
"description": "These learners prefer information displayed as words.",
"tips": [
"Write detailed notes",
"Create summaries in your own words",
"Read textbooks and articles",
"Make lists to organize information",
"Rewrite your notes to reinforce learning"
]
},
"Kinesthetic": {
"description": "Kinesthetic learners learn through movement and hands-on activities.",
"tips": [
"Use hands-on activities",
"Take frequent movement breaks",
"Create physical models",
"Associate information with physical actions",
"Study while walking or pacing"
]
}
}
def evaluate_quiz(self, answers: List[str]) -> str:
"""Evaluate quiz answers and generate results."""
if len(answers) != len(self.questions):
raise gr.Error("Not all questions were answered")
scores = {style: 0 for style in self.learning_styles}
for i, answer in enumerate(answers):
if not answer:
continue # Skip unanswered questions
for j, style in enumerate(self.learning_styles):
if answer == self.options[i][j]:
scores[style] += 1
break
total_answered = sum(1 for ans in answers if ans)
if total_answered == 0:
raise gr.Error("No answers provided")
percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Generate results report
result = "## Your Learning Style Results\n\n"
result += "### Scores:\n"
for style, score in sorted_styles:
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
max_score = max(scores.values())
primary_styles = [style for style, score in scores.items() if score == max_score]
result += "\n### Analysis:\n"
if len(primary_styles) == 1:
primary_style = primary_styles[0]
style_info = self.learning_styles[primary_style]
result += f"Your primary learning style is **{primary_style}**\n\n"
result += f"**{primary_style} Characteristics**:\n"
result += f"{style_info['description']}\n\n"
result += "**Recommended Study Strategies**:\n"
for tip in style_info['tips']:
result += f"- {tip}\n"
# Add complementary strategies
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
for tip in self.learning_styles[complementary]['tips'][:3]:
result += f"- {tip}\n"
else:
result += "You have multiple strong learning styles:\n"
for style in primary_styles:
result += f"- **{style}**\n"
result += "\n**Combined Learning Strategies**:\n"
result += "You may benefit from combining different learning approaches:\n"
for style in primary_styles:
result += f"\n**{style}** techniques:\n"
for tip in self.learning_styles[style]['tips'][:2]:
result += f"- {tip}\n"
return result
# Initialize quiz instance
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True)
def save_profile(self, name: str, age: Union[int, str], interests: str,
transcript: Dict, learning_style: str,
movie: str, movie_reason: str, show: str, show_reason: str,
book: str, book_reason: str, character: str, character_reason: str,
blog: str) -> str:
"""Save student profile with validation."""
try:
# Validate required fields
if not name.strip():
raise gr.Error("Name is required")
name = sanitize_input(name)
age = validate_age(age)
interests = sanitize_input(interests)
# Prepare favorites data
favorites = {
"movie": sanitize_input(movie),
"movie_reason": sanitize_input(movie_reason),
"show": sanitize_input(show),
"show_reason": sanitize_input(show_reason),
"book": sanitize_input(book),
"book_reason": sanitize_input(book_reason),
"character": sanitize_input(character),
"character_reason": sanitize_input(character_reason)
}
# Prepare full profile data
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript if transcript else {},
"learning_style": learning_style if learning_style else "Not assessed",
"favorites": favorites,
"blog": sanitize_input(blog) if blog else ""
}
# Save to JSON file
filename = f"{name.replace(' ', '_')}_profile.json"
filepath = self.profiles_dir / filename
with open(filepath, "w", encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
return self._generate_profile_summary(data)
except Exception as e:
raise gr.Error(f"Error saving profile: {str(e)}")
def load_profile(self, name: str = None) -> Dict:
"""Load profile by name or return the first one found."""
try:
profiles = list(self.profiles_dir.glob("*.json"))
if not profiles:
return {}
if name:
# Find profile by name
name = name.replace(" ", "_")
profile_file = self.profiles_dir / f"{name}_profile.json"
if not profile_file.exists():
raise gr.Error(f"No profile found for {name}")
else:
# Load the first profile found
profile_file = profiles[0]
with open(profile_file, "r", encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Error loading profile: {str(e)}")
return {}
def list_profiles(self) -> List[str]:
"""List all available profile names."""
profiles = list(self.profiles_dir.glob("*.json"))
return [p.stem.replace("_profile", "").replace("_", " ") for p in profiles]
def _generate_profile_summary(self, data: Dict) -> str:
"""Generate markdown summary of the profile."""
transcript = data.get("transcript", {})
favorites = data.get("favorites", {})
markdown = f"""## Student Profile: {data['name']}
### Basic Information
- **Age:** {data['age']}
- **Interests:** {data['interests']}
- **Learning Style:** {data['learning_style'].split('##')[0].strip()}
### Academic Information
{self._format_transcript(transcript)}
### Favorites
- **Movie:** {favorites.get('movie', 'Not specified')}
*Reason:* {favorites.get('movie_reason', 'Not specified')}
- **TV Show:** {favorites.get('show', 'Not specified')}
*Reason:* {favorites.get('show_reason', 'Not specified')}
- **Book:** {favorites.get('book', 'Not specified')}
*Reason:* {favorites.get('book_reason', 'Not specified')}
- **Character:** {favorites.get('character', 'Not specified')}
*Reason:* {favorites.get('character_reason', 'Not specified')}
### Personal Blog
{data.get('blog', '_No blog provided_')}
"""
return markdown
def _format_transcript(self, transcript: Dict) -> str:
"""Format transcript data for display."""
if not transcript or "courses" not in transcript:
return "_No transcript information available_"
display = "#### Course History\n"
courses_by_grade = transcript["courses"]
if isinstance(courses_by_grade, dict):
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
display += f"\n**Grade {grade}**\n"
for course in courses_by_grade[grade]:
display += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course and course['grade']:
display += f" (Grade: {course['grade']})"
if 'credits' in course:
display += f" | Credits: {course['credits']}"
display += f" | Year: {course.get('year', 'N/A')}\n"
if 'gpa' in transcript:
gpa = transcript['gpa']
display += "\n**GPA**\n"
display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
return display
# Initialize profile manager
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.context_history = []
self.max_context_length = 5 # Keep last 5 exchanges for context
def generate_response(self, message: str, history: List[Tuple[str, str]]) -> str:
"""Generate personalized response based on student profile and context."""
try:
# Load profile (simplified - in real app would handle multiple profiles)
profile = profile_manager.load_profile()
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Update context history
self._update_context(message, history)
# Extract profile information
name = profile.get("name", "there")
learning_style = profile.get("learning_style", "")
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
gpa = profile.get("transcript", {}).get("gpa", {})
interests = profile.get("interests", "")
courses = profile.get("transcript", {}).get("courses", {})
favorites = profile.get("favorites", {})
# Process message with context
response = self._process_message(message, profile)
# Add follow-up suggestions
if "study" in message.lower() or "learn" in message.lower():
response += "\n\nWould you like me to suggest a study schedule based on your courses?"
elif "course" in message.lower() or "class" in message.lower():
response += "\n\nWould you like help finding resources for any of these courses?"
return response
except Exception as e:
print(f"Error generating response: {str(e)}")
return "I encountered an error processing your request. Please try again."
def _update_context(self, message: str, history: List[Tuple[str, str]]) -> None:
"""Maintain conversation context."""
self.context_history.append(("user", message))
if history:
for h in history[-self.max_context_length:]:
self.context_history.append(("user", h[0]))
self.context_history.append(("assistant", h[1]))
# Trim to maintain max context length
self.context_history = self.context_history[-(self.max_context_length*2):]
def _process_message(self, message: str, profile: Dict) -> str:
"""Process user message with profile context."""
message_lower = message.lower()
# Greetings
if any(greet in message_lower for greet in ["hi", "hello", "hey", "greetings"]):
return f"Hello {profile.get('name', 'there')}! How can I help you with your learning today?"
# Study help
study_words = ["study", "learn", "prepare", "exam", "test", "homework"]
if any(word in message_lower for word in study_words):
return self._generate_study_advice(profile)
# Grade help
grade_words = ["grade", "gpa", "score", "marks", "results"]
if any(word in message_lower for word in grade_words):
return self._generate_grade_advice(profile)
# Interest help
interest_words = ["interest", "hobby", "passion", "extracurricular"]
if any(word in message_lower for word in interest_words):
return self._generate_interest_advice(profile)
# Course help
course_words = ["courses", "classes", "transcript", "schedule", "subject"]
if any(word in message_lower for word in course_words):
return self._generate_course_advice(profile)
# Favorites
favorite_words = ["movie", "show", "book", "character", "favorite"]
if any(word in message_lower for word in favorite_words):
return self._generate_favorites_response(profile)
# General help
if "help" in message_lower:
return self._generate_help_response()
# Default response
return ("I'm your personalized teaching assistant. I can help with study tips, "
"grade information, course advice, and more. Try asking about how to "
"study effectively or about your course history.")
def _generate_study_advice(self, profile: Dict) -> str:
"""Generate study advice based on learning style."""
learning_style = profile.get("learning_style", "")
response = ""
if "Visual" in learning_style:
response = ("Based on your visual learning style, I recommend:\n"
"- Creating colorful mind maps or diagrams\n"
"- Using highlighters to color-code your notes\n"
"- Watching educational videos on the topics\n"
"- Creating flashcards with images\n\n")
elif "Auditory" in learning_style:
response = ("Based on your auditory learning style, I recommend:\n"
"- Recording your notes and listening to them\n"
"- Participating in study groups to discuss concepts\n"
"- Explaining the material out loud to yourself\n"
"- Finding podcasts or audio lectures on the topics\n\n")
elif "Reading/Writing" in learning_style:
response = ("Based on your reading/writing learning style, I recommend:\n"
"- Writing detailed summaries in your own words\n"
"- Creating organized outlines of the material\n"
"- Reading additional textbooks or articles\n"
"- Rewriting your notes to reinforce learning\n\n")
elif "Kinesthetic" in learning_style:
response = ("Based on your kinesthetic learning style, I recommend:\n"
"- Creating physical models or demonstrations\n"
"- Using hands-on activities to learn concepts\n"
"- Taking frequent movement breaks while studying\n"
"- Associating information with physical actions\n\n")
else:
response = ("Here are some general study tips:\n"
"- Use the Pomodoro technique (25 min study, 5 min break)\n"
"- Space out your study sessions over time\n"
"- Test yourself with practice questions\n"
"- Teach the material to someone else\n\n")
# Add time management advice
response += ("**Time Management Tips**:\n"
"- Create a study schedule and stick to it\n"
"- Prioritize difficult subjects when you're most alert\n"
"- Break large tasks into smaller, manageable chunks\n"
"- Set specific goals for each study session")
return response
def _generate_grade_advice(self, profile: Dict) -> str:
"""Generate response about grades and GPA."""
gpa = profile.get("transcript", {}).get("gpa", {})
courses = profile.get("transcript", {}).get("courses", {})
response = (f"Your GPA information:\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n")
# Identify any failing grades
weak_subjects = []
for grade_level, course_list in courses.items():
for course in course_list:
if course.get('grade', '').upper() in ['D', 'F']:
weak_subjects.append(course.get('name', 'Unknown course'))
if weak_subjects:
response += ("**Areas for Improvement**:\n"
f"You might want to focus on these subjects: {', '.join(weak_subjects)}\n\n")
response += ("**Grade Improvement Strategies**:\n"
"- Meet with your teachers to discuss your performance\n"
"- Identify specific areas where you lost points\n"
"- Create a targeted study plan for weak areas\n"
"- Practice with past exams or sample questions")
return response
def _generate_interest_advice(self, profile: Dict) -> str:
"""Generate response based on student interests."""
interests = profile.get("interests", "")
response = f"I see you're interested in: {interests}\n\n"
response += ("**Suggestions**:\n"
"- Look for clubs or extracurricular activities related to these interests\n"
"- Explore career paths that align with these interests\n"
"- Find online communities or forums about these topics\n"
"- Consider projects or independent study in these areas")
return response
def _generate_course_advice(self, profile: Dict) -> str:
"""Generate response about courses."""
courses = profile.get("transcript", {}).get("courses", {})
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
response = "Here's a summary of your courses:\n"
for grade in sorted(courses.keys(), key=lambda x: int(x) if x.isdigit() else x):
response += f"\n**Grade {grade}**:\n"
for course in courses[grade]:
response += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course:
response += f" (Grade: {course['grade']})"
response += "\n"
response += f"\nAs a grade {grade_level} student, you might want to:\n"
if grade_level in ["9", "10"]:
response += ("- Focus on building strong foundational skills\n"
"- Explore different subjects to find your interests\n"
"- Start thinking about college/career requirements")
elif grade_level in ["11", "12"]:
response += ("- Focus on courses relevant to your college/career goals\n"
"- Consider taking AP or advanced courses if available\n"
"- Ensure you're meeting graduation requirements")
return response
def _generate_favorites_response(self, profile: Dict) -> str:
"""Generate response about favorite items."""
favorites = profile.get("favorites", {})
response = "I see you enjoy:\n"
if favorites.get('movie'):
response += f"- Movie: {favorites['movie']} ({favorites.get('movie_reason', 'no reason provided')})\n"
if favorites.get('show'):
response += f"- TV Show: {favorites['show']} ({favorites.get('show_reason', 'no reason provided')})\n"
if favorites.get('book'):
response += f"- Book: {favorites['book']} ({favorites.get('book_reason', 'no reason provided')})\n"
if favorites.get('character'):
response += f"- Character: {favorites['character']} ({favorites.get('character_reason', 'no reason provided')})\n"
response += "\nThese preferences suggest you might enjoy:\n"
response += "- Similar books/movies in the same genre\n"
response += "- Creative projects related to these stories\n"
response += "- Analyzing themes or characters in your schoolwork"
return response
def _generate_help_response(self) -> str:
"""Generate help response with available commands."""
return ("""I can help with:
- **Study tips**: "How should I study for math?"
- **Grade information**: "What's my GPA?"
- **Course advice**: "Show me my course history"
- **Interest suggestions**: "What clubs match my interests?"
- **General advice**: "How can I improve my grades?"
Try asking about any of these topics!""")
# Initialize teaching assistant
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
# Custom CSS for better styling
app.css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
}
.tab {
padding: 20px;
border-radius: 8px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.progress-bar {
height: 5px;
background: linear-gradient(to right, #4CAF50, #8BC34A);
margin-bottom: 15px;
border-radius: 3px;
}
.quiz-question {
margin-bottom: 15px;
padding: 15px;
background: #f5f5f5;
border-radius: 5px;
}
"""
gr.Markdown("""
# Student Learning Assistant
**Your personalized education companion**
Complete each step to get customized learning recommendations.
""")
# Progress tracker
with gr.Row():
with gr.Column(scale=1):
step1 = gr.Button("1. Upload Transcript", variant="primary")
with gr.Column(scale=1):
step2 = gr.Button("2. Learning Style Quiz")
with gr.Column(scale=1):
step3 = gr.Button("3. Personal Questions")
with gr.Column(scale=1):
step4 = gr.Button("4. Save & Review")
with gr.Column(scale=1):
step5 = gr.Button("5. AI Assistant")
# Tab navigation logic
def navigate_to_tab(tab_index):
return {tab: gr.update(visible=(i == tab_index)) for i, tab in enumerate(tabs)}
# Main tabs
with gr.Tabs() as tabs:
# ===== TAB 1: Transcript Upload =====
with gr.Tab("Transcript Upload", id=0) as tab1:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Upload Your Transcript")
gr.Markdown("Upload a PDF of your academic transcript to analyze your courses and GPA.")
with gr.Group():
transcript_file = gr.File(
label="Transcript PDF",
file_types=ALLOWED_FILE_TYPES,
type="filepath"
)
upload_btn = gr.Button("Upload & Analyze", variant="primary")
gr.Markdown("**Note**: Your file is processed locally and not stored permanently.")
with gr.Column(scale=2):
transcript_output = gr.Textbox(
label="Transcript Analysis",
lines=20,
interactive=False
)
transcript_data = gr.State()
upload_btn.click(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
# ===== TAB 2: Learning Style Quiz =====
with gr.Tab("Learning Style Quiz", id=1) as tab2:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 2: Discover Your Learning Style")
gr.Markdown("Complete this 20-question quiz to identify whether you're a visual, auditory, reading/writing, or kinesthetic learner.")
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
quiz_submit = gr.Button("Submit Quiz", variant="primary")
with gr.Column(scale=2):
quiz_components = []
with gr.Accordion("Quiz Questions", open=True):
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
with gr.Group(elem_classes="quiz-question"):
q = gr.Radio(
options,
label=f"{i+1}. {question}",
show_label=True
)
quiz_components.append(q)
learning_output = gr.Markdown(
label="Your Learning Style Results",
visible=False
)
# Update progress bar as questions are answered
for component in quiz_components:
component.change(
fn=lambda *answers: {
progress: gr.HTML(
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
)
},
inputs=quiz_components,
outputs=progress
)
quiz_submit.click(
fn=learning_style_quiz.evaluate_quiz,
inputs=quiz_components,
outputs=learning_output
).then(
fn=lambda: gr.update(visible=True),
outputs=learning_output
)
# ===== TAB 3: Personal Questions =====
with gr.Tab("Personal Profile", id=2) as tab3:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 3: Tell Us About Yourself")
gr.Markdown("This information helps us provide personalized recommendations.")
with gr.Group():
name = gr.Textbox(label="Full Name", placeholder="Your name")
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
interests = gr.Textbox(
label="Your Interests/Hobbies",
placeholder="e.g., Science, Music, Sports, Art..."
)
gr.Markdown("### Favorites")
with gr.Group():
movie = gr.Textbox(label="Favorite Movie")
movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
show = gr.Textbox(label="Favorite TV Show")
show_reason = gr.Textbox(label="Why do you like it?", lines=2)
book = gr.Textbox(label="Favorite Book")
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
character = gr.Textbox(label="Favorite Character (from any story)")
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
with gr.Column(scale=1):
gr.Markdown("### Additional Information")
blog_checkbox = gr.Checkbox(
label="Would you like to write a short blog about your learning experiences?",
value=False
)
blog_text = gr.Textbox(
label="Your Learning Blog",
placeholder="Write about your learning journey, challenges, goals...",
lines=8,
visible=False
)
blog_checkbox.change(
lambda x: gr.update(visible=x),
inputs=blog_checkbox,
outputs=blog_text
)
# ===== TAB 4: Save & Review =====
with gr.Tab("Save Profile", id=3) as tab4:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 4: Review & Save Your Profile")
gr.Markdown("Verify your information before saving. You can return to previous steps to make changes.")
save_btn = gr.Button("Save Profile", variant="primary")
load_profile_dropdown = gr.Dropdown(
label="Or load existing profile",
choices=profile_manager.list_profiles(),
visible=bool(profile_manager.list_profiles())
)
load_btn = gr.Button("Load Profile", visible=bool(profile_manager.list_profiles()))
with gr.Column(scale=2):
output_summary = gr.Markdown(
"Your profile summary will appear here after saving.",
label="Profile Summary"
)
save_btn.click(
fn=profile_manager.save_profile,
inputs=[
name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text
],
outputs=output_summary
)
load_btn.click(
fn=lambda name: profile_manager.load_profile(name),
inputs=load_profile_dropdown,
outputs=output_summary
)
# ===== TAB 5: AI Teaching Assistant =====
with gr.Tab("AI Assistant", id=4) as tab5:
gr.Markdown("## Your Personalized Learning Assistant")
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
chatbot = gr.ChatInterface(
fn=teaching_assistant.generate_response,
examples=[
"How should I study for my next math test?",
"What's my current GPA?",
"Show me my course history",
"How can I improve my grades in science?",
"What study methods match my learning style?"
],
title="",
retry_btn=None,
undo_btn=None
)
# Tab navigation buttons
step1.click(
fn=lambda: navigate_to_tab(0),
outputs={tab: tab for tab in tabs}
)
step2.click(
fn=lambda: navigate_to_tab(1),
outputs={tab: tab for tab in tabs}
)
step3.click(
fn=lambda: navigate_to_tab(2),
outputs={tab: tab for tab in tabs}
)
step4.click(
fn=lambda: navigate_to_tab(3),
outputs={tab: tab for tab in tabs}
)
step5.click(
fn=lambda: navigate_to_tab(4),
outputs={tab: tab for tab in tabs}
)
return app
# Create the interface
app = create_interface()
# For Hugging Face Spaces deployment
if __name__ == "__main__":
app.launch()
|