Spaces:
Running
Running
File size: 56,172 Bytes
b57ed91 3e64737 2c68bd8 3e64737 ce1eb3c cd3e466 66cb301 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c e581856 ce1eb3c e581856 ce1eb3c e581856 66cb301 cd3e466 6f8fb84 ce1eb3c cd3e466 ce1eb3c cd3e466 66cb301 ce1eb3c cd3e466 ce1eb3c 3e64737 0e95f56 cd3e466 ce1eb3c cd3e466 ce1eb3c 0e95f56 ce1eb3c 0e95f56 3e64737 0e95f56 ce1eb3c cd3e466 ce1eb3c e581856 ce1eb3c 6f8fb84 cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 6f8fb84 cd3e466 6f8fb84 cd3e466 6f8fb84 cd3e466 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 0e95f56 6f8fb84 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 0e95f56 a7c9f79 cd3e466 a7c9f79 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 6f8fb84 ce1eb3c cd3e466 ce1eb3c 0e95f56 6f8fb84 ce1eb3c e581856 cd3e466 0e95f56 ce1eb3c e581856 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 6f8fb84 cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 0e95f56 cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 3e64737 ce1eb3c 3e64737 ce1eb3c 6f8fb84 ce1eb3c 431b892 cd3e466 ce1eb3c cd3e466 ce1eb3c 431b892 647dadd ce1eb3c 647dadd ce1eb3c 647dadd ce1eb3c 431b892 ce1eb3c 431b892 ce1eb3c 3e64737 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 3e64737 6f8fb84 ce1eb3c 0ecc813 32164a9 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 6f8fb84 ce1eb3c 3e64737 ce1eb3c 3e64737 6f8fb84 3e64737 ce1eb3c 3e64737 ce1eb3c 3e64737 ce1eb3c 0e95f56 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c e581856 ce1eb3c e581856 ce1eb3c cd3e466 e581856 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c e581856 cd3e466 e581856 ce1eb3c cd3e466 ce1eb3c cd3e466 ce1eb3c 2b2363e ce1eb3c 647dadd e581856 647dadd ce1eb3c e581856 0e95f56 ce1eb3c e581856 0e95f56 ce1eb3c e581856 0e95f56 ce1eb3c e581856 0e95f56 ce1eb3c e581856 ce1eb3c 2c68bd8 ce1eb3c 6e6aad7 2c68bd8 ce1eb3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
import fitz # PyMuPDF for better PDF text extraction
import pytesseract
from PIL import Image
import io
import secrets
import string
from huggingface_hub import HfApi, HfFolder
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"] # Added image support
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
SESSION_TOKEN_LENGTH = 32
HF_TOKEN = os.getenv("HF_TOKEN")
# Initialize Hugging Face API
if HF_TOKEN:
hf_api = HfApi(token=HF_TOKEN)
HfFolder.save_token(HF_TOKEN)
# ========== UTILITY FUNCTIONS ==========
def generate_session_token() -> str:
"""Generate a random session token for user identification."""
alphabet = string.ascii_letters + string.digits
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
def sanitize_input(text: str) -> str:
"""Sanitize user input to prevent XSS and injection attacks."""
return html.escape(text.strip())
def validate_name(name: str) -> str:
"""Validate name input."""
name = name.strip()
if not name:
raise gr.Error("Name cannot be empty")
if len(name) > 100:
raise gr.Error("Name is too long (max 100 characters)")
if any(c.isdigit() for c in name):
raise gr.Error("Name cannot contain numbers")
return name
def validate_age(age: Union[int, float, str]) -> int:
"""Validate and convert age input."""
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise gr.Error(f"Age must be between {MIN_AGE} and {MAX_AGE}")
return age_int
except (ValueError, TypeError):
raise gr.Error("Please enter a valid age number")
def validate_file(file_obj) -> None:
"""Validate uploaded file."""
if not file_obj:
raise gr.Error("No file uploaded")
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ALLOWED_FILE_TYPES:
raise gr.Error(f"Invalid file type. Allowed: {', '.join(ALLOWED_FILE_TYPES)}")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB
if file_size > MAX_FILE_SIZE_MB:
raise gr.Error(f"File too large. Max size: {MAX_FILE_SIZE_MB}MB")
def extract_text_with_ocr(file_path: str) -> str:
"""Extract text from image files using OCR."""
try:
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
return text
except Exception as e:
raise gr.Error(f"OCR processing failed: {str(e)}")
# ========== TRANSCRIPT PARSING ==========
def extract_gpa(text: str, gpa_type: str) -> str:
"""Extract GPA information from text with validation."""
patterns = [
rf'{gpa_type}\s*GPA\s*:\s*([\d\.]+)', # "Weighted GPA: 3.5"
rf'{gpa_type}\s*GPA\s*([\d\.]+)', # "Weighted GPA 3.5"
rf'{gpa_type}\s*:\s*([\d\.]+)', # "Weighted: 3.5"
rf'{gpa_type}\s*([\d\.]+)' # "Weighted 3.5"
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
gpa_value = match.group(1)
try:
gpa_float = float(gpa_value)
if not 0.0 <= gpa_float <= 5.0: # Assuming 5.0 is max for weighted GPA
return "Invalid GPA"
return gpa_value
except ValueError:
continue
return "N/A"
def extract_courses_from_table(text: str) -> Dict[str, List[Dict]]:
"""Extract course information with multiple pattern fallbacks."""
# Enhanced patterns to handle more transcript formats
patterns = [
# Pattern 1: Structured table format
re.compile(
r'(\d{4}-\d{4})\s*' # School year
r'\|?\s*(\d+)\s*' # Grade level
r'\|?\s*([A-Z0-9]+)\s*' # Course code
r'\|?\s*([^\|]+?)\s*' # Course name
r'(?:\|\s*[^\|]*){2}' # Skip Term and DstNumber
r'\|\s*([A-FW][+-]?)\s*' # Grade (FG column)
r'(?:\|\s*[^\|]*)' # Skip Incl column
r'\|\s*([\d\.]+|inProgress)' # Credits
),
# Pattern 2: Less structured format
re.compile(
r'(\d{4}-\d{4})\s+' # School year
r'(\d+)\s+' # Grade level
r'([A-Z0-9]+)\s+' # Course code
r'(.+?)\s+' # Course name
r'([A-FW][+-]?)\s*' # Grade
r'([\d\.]+|inProgress)' # Credits
),
# Pattern 3: Semester-based format
re.compile(
r'(Fall|Spring|Summer)\s+(\d{4})\s+' # Term and year
r'(\d+)\s+' # Grade level
r'([A-Z0-9]+)\s+' # Course code
r'(.+?)\s+' # Course name
r'([A-FW][+-]?)\s*' # Grade
r'([\d\.]+)' # Credits
)
]
courses_by_grade = defaultdict(list)
for pattern in patterns:
for match in re.finditer(pattern, text):
if len(match.groups()) == 6:
year_range, grade_level, course_code, course_name, grade, credits = match.groups()
term = None
else:
term, year, grade_level, course_code, course_name, grade, credits = match.groups()
year_range = f"{term} {year}"
# Clean and format course information
course_name = course_name.strip()
if 'DE:' in course_name:
course_name = course_name.replace('DE:', 'Dual Enrollment:')
if 'AP' in course_name and 'AP ' not in course_name:
course_name = course_name.replace('AP', 'AP ')
course_info = {
'name': f"{course_code} {course_name}",
'year': year_range,
'credits': credits if credits != 'inProgress' else 'In Progress'
}
if grade and grade.strip():
course_info['grade'] = grade.strip()
courses_by_grade[grade_level].append(course_info)
if courses_by_grade: # If we found matches with this pattern, stop
break
return courses_by_grade
def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
"""Parse transcript file with robust error handling and OCR support."""
try:
if not file_obj:
raise gr.Error("Please upload a file first")
validate_file(file_obj)
text = ''
file_ext = os.path.splitext(file_obj.name)[1].lower()
try:
if file_ext == '.pdf':
# Try PyMuPDF first for better text extraction
try:
doc = fitz.open(file_obj.name)
for page in doc:
text += page.get_text() + '\n'
except:
# Fallback to PyPDF2
reader = PdfReader(file_obj.name)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + '\n'
elif file_ext in ['.png', '.jpg', '.jpeg']:
text = extract_text_with_ocr(file_obj.name)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
if not text.strip():
raise gr.Error("No text could be extracted from the file")
# Enhanced GPA extraction
gpa_data = {
'weighted': extract_gpa(text, 'Weighted'),
'unweighted': extract_gpa(text, 'Unweighted')
}
# Extract grade level with multiple fallback patterns
grade_match = (
re.search(r'Current Grade:\s*(\d+)', text) or
re.search(r'Grade\s*:\s*(\d+)', text) or
re.search(r'Grade\s+(\d+)', text) or
re.search(r'Grade\s+Level:\s*(\d+)', text) or
re.search(r'Grade\s*\(?\s*(\d+)\s*\)?', text)
)
grade_level = grade_match.group(1) if grade_match else "Unknown"
courses_by_grade = extract_courses_from_table(text)
# Format output text
output_text = f"Student Transcript Summary\n{'='*40}\n"
output_text += f"Current Grade Level: {grade_level}\n"
output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
output_text += "Course History:\n{'='*40}\n"
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
for course in courses_by_grade[grade]:
output_text += f"- {course['name']}"
if 'grade' in course and course['grade']:
output_text += f" (Grade: {course['grade']})"
if 'credits' in course:
output_text += f" | Credits: {course['credits']}"
output_text += f" | Year: {course['year']}\n"
return output_text, {
"gpa": gpa_data,
"grade_level": grade_level,
"courses": dict(courses_by_grade)
}
except Exception as e:
return f"Error processing transcript: {str(e)}", None
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
self.options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
self.learning_styles = {
"Visual": {
"description": "Visual learners prefer using images, diagrams, and spatial understanding.",
"tips": [
"Use color coding in your notes",
"Create mind maps and diagrams",
"Watch educational videos",
"Use flashcards with images",
"Highlight important information in different colors"
],
"careers": [
"Graphic Designer", "Architect", "Photographer",
"Engineer", "Surgeon", "Pilot"
]
},
"Auditory": {
"description": "Auditory learners learn best through listening and speaking.",
"tips": [
"Record lectures and listen to them",
"Participate in study groups",
"Explain concepts out loud to yourself",
"Use rhymes or songs to remember information",
"Listen to educational podcasts"
],
"careers": [
"Musician", "Journalist", "Lawyer",
"Psychologist", "Teacher", "Customer Service"
]
},
"Reading/Writing": {
"description": "These learners prefer information displayed as words.",
"tips": [
"Write detailed notes",
"Create summaries in your own words",
"Read textbooks and articles",
"Make lists to organize information",
"Rewrite your notes to reinforce learning"
],
"careers": [
"Writer", "Researcher", "Editor",
"Accountant", "Programmer", "Historian"
]
},
"Kinesthetic": {
"description": "Kinesthetic learners learn through movement and hands-on activities.",
"tips": [
"Use hands-on activities",
"Take frequent movement breaks",
"Create physical models",
"Associate information with physical actions",
"Study while walking or pacing"
],
"careers": [
"Athlete", "Chef", "Mechanic",
"Dancer", "Physical Therapist", "Carpenter"
]
}
}
def evaluate_quiz(self, *answers) -> str:
"""Evaluate quiz answers and generate enhanced results."""
answers = list(answers) # Convert tuple to list
if len(answers) != len(self.questions):
raise gr.Error("Not all questions were answered")
scores = {style: 0 for style in self.learning_styles}
for i, answer in enumerate(answers):
if not answer:
continue # Skip unanswered questions
for j, style in enumerate(self.learning_styles):
if answer == self.options[i][j]:
scores[style] += 1
break
total_answered = sum(1 for ans in answers if ans)
if total_answered == 0:
raise gr.Error("No answers provided")
percentages = {style: (score/total_answered)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
# Generate enhanced results report
result = "## Your Learning Style Results\n\n"
result += "### Scores:\n"
for style, score in sorted_styles:
result += f"- **{style}**: {score}/{total_answered} ({percentages[style]:.1f}%)\n"
max_score = max(scores.values())
primary_styles = [style for style, score in scores.items() if score == max_score]
result += "\n### Analysis:\n"
if len(primary_styles) == 1:
primary_style = primary_styles[0]
style_info = self.learning_styles[primary_style]
result += f"Your primary learning style is **{primary_style}**\n\n"
result += f"**{primary_style} Characteristics**:\n"
result += f"{style_info['description']}\n\n"
result += "**Recommended Study Strategies**:\n"
for tip in style_info['tips']:
result += f"- {tip}\n"
result += "\n**Potential Career Paths**:\n"
for career in style_info['careers'][:6]:
result += f"- {career}\n"
# Add complementary strategies
complementary = [s for s in sorted_styles if s[0] != primary_style][0][0]
result += f"\nYou might also benefit from some **{complementary}** strategies:\n"
for tip in self.learning_styles[complementary]['tips'][:3]:
result += f"- {tip}\n"
else:
result += "You have multiple strong learning styles:\n"
for style in primary_styles:
result += f"- **{style}**\n"
result += "\n**Combined Learning Strategies**:\n"
result += "You may benefit from combining different learning approaches:\n"
for style in primary_styles:
result += f"\n**{style}** techniques:\n"
for tip in self.learning_styles[style]['tips'][:2]:
result += f"- {tip}\n"
result += f"\n**{style}** career suggestions:\n"
for career in self.learning_styles[style]['careers'][:3]:
result += f"- {career}\n"
return result
# Initialize quiz instance
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True, parents=True)
self.current_session = None
def set_session(self, session_token: str) -> None:
"""Set the current session token."""
self.current_session = session_token
def get_profile_path(self, name: str) -> Path:
"""Get profile path with session token if available."""
if self.current_session:
return self.profiles_dir / f"{name.replace(' ', '_')}_{self.current_session}_profile.json"
return self.profiles_dir / f"{name.replace(' ', '_')}_profile.json"
def save_profile(self, name: str, age: Union[int, str], interests: str,
transcript: Dict, learning_style: str,
movie: str, movie_reason: str, show: str, show_reason: str,
book: str, book_reason: str, character: str, character_reason: str,
blog: str) -> str:
"""Save student profile with validation."""
try:
# Validate required fields
name = validate_name(name)
age = validate_age(age)
interests = sanitize_input(interests)
# Prepare favorites data
favorites = {
"movie": sanitize_input(movie),
"movie_reason": sanitize_input(movie_reason),
"show": sanitize_input(show),
"show_reason": sanitize_input(show_reason),
"book": sanitize_input(book),
"book_reason": sanitize_input(book_reason),
"character": sanitize_input(character),
"character_reason": sanitize_input(character_reason)
}
# Prepare full profile data
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript if transcript else {},
"learning_style": learning_style if learning_style else "Not assessed",
"favorites": favorites,
"blog": sanitize_input(blog) if blog else "",
"session_token": self.current_session
}
# Save to JSON file
filepath = self.get_profile_path(name)
with open(filepath, "w", encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
# Upload to HF Hub if token is available
if HF_TOKEN:
try:
hf_api.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"profiles/{filepath.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset"
)
except Exception as e:
print(f"Failed to upload to HF Hub: {str(e)}")
return self._generate_profile_summary(data)
except Exception as e:
raise gr.Error(f"Error saving profile: {str(e)}")
def load_profile(self, name: str = None, session_token: str = None) -> Dict:
"""Load profile by name or return the first one found."""
try:
if session_token:
profile_pattern = f"*{session_token}_profile.json"
else:
profile_pattern = "*.json"
profiles = list(self.profiles_dir.glob(profile_pattern))
if not profiles:
return {}
if name:
# Find profile by name
name = name.replace(" ", "_")
if session_token:
profile_file = self.profiles_dir / f"{name}_{session_token}_profile.json"
else:
profile_file = self.profiles_dir / f"{name}_profile.json"
if not profile_file.exists():
# Try loading from HF Hub
if HF_TOKEN:
try:
hf_api.download_file(
path_in_repo=f"profiles/{profile_file.name}",
repo_id="your-username/student-learning-assistant",
repo_type="dataset",
local_dir=self.profiles_dir
)
except:
raise gr.Error(f"No profile found for {name}")
else:
raise gr.Error(f"No profile found for {name}")
else:
# Load the first profile found
profile_file = profiles[0]
with open(profile_file, "r", encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Error loading profile: {str(e)}")
return {}
def list_profiles(self, session_token: str = None) -> List[str]:
"""List all available profile names for the current session."""
if session_token:
profiles = list(self.profiles_dir.glob(f"*{session_token}_profile.json"))
else:
profiles = list(self.profiles_dir.glob("*.json"))
# Extract just the name part (without session token)
profile_names = []
for p in profiles:
name_part = p.stem.replace("_profile", "")
if session_token:
name_part = name_part.replace(f"_{session_token}", "")
profile_names.append(name_part.replace("_", " "))
return profile_names
def _generate_profile_summary(self, data: Dict) -> str:
"""Generate markdown summary of the profile."""
transcript = data.get("transcript", {})
favorites = data.get("favorites", {})
learning_style = data.get("learning_style", "Not assessed")
markdown = f"""## Student Profile: {data['name']}
### Basic Information
- **Age:** {data['age']}
- **Interests:** {data['interests']}
- **Learning Style:** {learning_style.split('##')[0].strip()}
### Academic Information
{self._format_transcript(transcript)}
### Favorites
- **Movie:** {favorites.get('movie', 'Not specified')}
*Reason:* {favorites.get('movie_reason', 'Not specified')}
- **TV Show:** {favorites.get('show', 'Not specified')}
*Reason:* {favorites.get('show_reason', 'Not specified')}
- **Book:** {favorites.get('book', 'Not specified')}
*Reason:* {favorites.get('book_reason', 'Not specified')}
- **Character:** {favorites.get('character', 'Not specified')}
*Reason:* {favorites.get('character_reason', 'Not specified')}
### Personal Blog
{data.get('blog', '_No blog provided_')}
"""
return markdown
def _format_transcript(self, transcript: Dict) -> str:
"""Format transcript data for display."""
if not transcript or "courses" not in transcript:
return "_No transcript information available_"
display = "#### Course History\n"
courses_by_grade = transcript["courses"]
if isinstance(courses_by_grade, dict):
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
display += f"\n**Grade {grade}**\n"
for course in courses_by_grade[grade]:
display += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course and course['grade']:
display += f" (Grade: {course['grade']})"
if 'credits' in course:
display += f" | Credits: {course['credits']}"
display += f" | Year: {course.get('year', 'N/A')}\n"
if 'gpa' in transcript:
gpa = transcript['gpa']
display += "\n**GPA**\n"
display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
return display
# Initialize profile manager
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.context_history = []
self.max_context_length = 5 # Keep last 5 exchanges for context
def generate_response(self, message: str, history: List[List[Union[str, None]]], session_token: str) -> str:
"""Generate personalized response based on student profile and context."""
try:
# Load profile with session token
profile = profile_manager.load_profile(session_token=session_token)
if not profile:
return "Please complete and save your profile first using the previous tabs."
# Update context history
self._update_context(message, history)
# Extract profile information
name = profile.get("name", "there")
learning_style = profile.get("learning_style", "")
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
gpa = profile.get("transcript", {}).get("gpa", {})
interests = profile.get("interests", "")
courses = profile.get("transcript", {}).get("courses", {})
favorites = profile.get("favorites", {})
# Process message with context
response = self._process_message(message, profile)
# Add follow-up suggestions
if "study" in message.lower() or "learn" in message.lower():
response += "\n\nWould you like me to suggest a study schedule based on your courses?"
elif "course" in message.lower() or "class" in message.lower():
response += "\n\nWould you like help finding resources for any of these courses?"
return response
except Exception as e:
print(f"Error generating response: {str(e)}")
return "I encountered an error processing your request. Please try again."
def _update_context(self, message: str, history: List[List[Union[str, None]]]) -> None:
"""Maintain conversation context."""
self.context_history.append({"role": "user", "content": message})
if history:
for h in history[-self.max_context_length:]:
if h[0]: # User message
self.context_history.append({"role": "user", "content": h[0]})
if h[1]: # Assistant message
self.context_history.append({"role": "assistant", "content": h[1]})
# Trim to maintain max context length
self.context_history = self.context_history[-(self.max_context_length*2):]
def _process_message(self, message: str, profile: Dict) -> str:
"""Process user message with profile context."""
message_lower = message.lower()
# Greetings
if any(greet in message_lower for greet in ["hi", "hello", "hey", "greetings"]):
return f"Hello {profile.get('name', 'there')}! How can I help you with your learning today?"
# Study help
study_words = ["study", "learn", "prepare", "exam", "test", "homework"]
if any(word in message_lower for word in study_words):
return self._generate_study_advice(profile)
# Grade help
grade_words = ["grade", "gpa", "score", "marks", "results"]
if any(word in message_lower for word in grade_words):
return self._generate_grade_advice(profile)
# Interest help
interest_words = ["interest", "hobby", "passion", "extracurricular"]
if any(word in message_lower for word in interest_words):
return self._generate_interest_advice(profile)
# Course help
course_words = ["courses", "classes", "transcript", "schedule", "subject"]
if any(word in message_lower for word in course_words):
return self._generate_course_advice(profile)
# Favorites
favorite_words = ["movie", "show", "book", "character", "favorite"]
if any(word in message_lower for word in favorite_words):
return self._generate_favorites_response(profile)
# General help
if "help" in message_lower:
return self._generate_help_response()
# Default response
return ("I'm your personalized teaching assistant. I can help with study tips, "
"grade information, course advice, and more. Try asking about how to "
"study effectively or about your course history.")
def _generate_study_advice(self, profile: Dict) -> str:
"""Generate study advice based on learning style."""
learning_style = profile.get("learning_style", "")
response = ""
if "Visual" in learning_style:
response = ("Based on your visual learning style, I recommend:\n"
"- Creating colorful mind maps or diagrams\n"
"- Using highlighters to color-code your notes\n"
"- Watching educational videos on the topics\n"
"- Creating flashcards with images\n\n")
elif "Auditory" in learning_style:
response = ("Based on your auditory learning style, I recommend:\n"
"- Recording your notes and listening to them\n"
"- Participating in study groups to discuss concepts\n"
"- Explaining the material out loud to yourself\n"
"- Finding podcasts or audio lectures on the topics\n\n")
elif "Reading/Writing" in learning_style:
response = ("Based on your reading/writing learning style, I recommend:\n"
"- Writing detailed summaries in your own words\n"
"- Creating organized outlines of the material\n"
"- Reading additional textbooks or articles\n"
"- Rewriting your notes to reinforce learning\n\n")
elif "Kinesthetic" in learning_style:
response = ("Based on your kinesthetic learning style, I recommend:\n"
"- Creating physical models or demonstrations\n"
"- Using hands-on activities to learn concepts\n"
"- Taking frequent movement breaks while studying\n"
"- Associating information with physical actions\n\n")
else:
response = ("Here are some general study tips:\n"
"- Use the Pomodoro technique (25 min study, 5 min break)\n"
"- Space out your study sessions over time\n"
"- Test yourself with practice questions\n"
"- Teach the material to someone else\n\n")
# Add time management advice
response += ("**Time Management Tips**:\n"
"- Create a study schedule and stick to it\n"
"- Prioritize difficult subjects when you're most alert\n"
"- Break large tasks into smaller, manageable chunks\n"
"- Set specific goals for each study session")
return response
def _generate_grade_advice(self, profile: Dict) -> str:
"""Generate response about grades and GPA."""
gpa = profile.get("transcript", {}).get("gpa", {})
courses = profile.get("transcript", {}).get("courses", {})
response = (f"Your GPA information:\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n")
# Identify any failing grades
weak_subjects = []
for grade_level, course_list in courses.items():
for course in course_list:
if course.get('grade', '').upper() in ['D', 'F']:
weak_subjects.append(course.get('name', 'Unknown course'))
if weak_subjects:
response += ("**Areas for Improvement**:\n"
f"You might want to focus on these subjects: {', '.join(weak_subjects)}\n\n")
response += ("**Grade Improvement Strategies**:\n"
"- Meet with your teachers to discuss your performance\n"
"- Identify specific areas where you lost points\n"
"- Create a targeted study plan for weak areas\n"
"- Practice with past exams or sample questions")
return response
def _generate_interest_advice(self, profile: Dict) -> str:
"""Generate response based on student interests."""
interests = profile.get("interests", "")
response = f"I see you're interested in: {interests}\n\n"
response += ("**Suggestions**:\n"
"- Look for clubs or extracurricular activities related to these interests\n"
"- Explore career paths that align with these interests\n"
"- Find online communities or forums about these topics\n"
"- Consider projects or independent study in these areas")
return response
def _generate_course_advice(self, profile: Dict) -> str:
"""Generate response about courses."""
courses = profile.get("transcript", {}).get("courses", {})
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
response = "Here's a summary of your courses:\n"
for grade in sorted(courses.keys(), key=lambda x: int(x) if x.isdigit() else x):
response += f"\n**Grade {grade}**:\n"
for course in courses[grade]:
response += f"- {course.get('name', 'Unnamed course')}"
if 'grade' in course:
response += f" (Grade: {course['grade']})"
response += "\n"
response += f"\nAs a grade {grade_level} student, you might want to:\n"
if grade_level in ["9", "10"]:
response += ("- Focus on building strong foundational skills\n"
"- Explore different subjects to find your interests\n"
"- Start thinking about college/career requirements")
elif grade_level in ["11", "12"]:
response += ("- Focus on courses relevant to your college/career goals\n"
"- Consider taking AP or advanced courses if available\n"
"- Ensure you're meeting graduation requirements")
return response
def _generate_favorites_response(self, profile: Dict) -> str:
"""Generate response about favorite items."""
favorites = profile.get("favorites", {})
response = "I see you enjoy:\n"
if favorites.get('movie'):
response += f"- Movie: {favorites['movie']} ({favorites.get('movie_reason', 'no reason provided')})\n"
if favorites.get('show'):
response += f"- TV Show: {favorites['show']} ({favorites.get('show_reason', 'no reason provided')})\n"
if favorites.get('book'):
response += f"- Book: {favorites['book']} ({favorites.get('book_reason', 'no reason provided')})\n"
if favorites.get('character'):
response += f"- Character: {favorites['character']} ({favorites.get('character_reason', 'no reason provided')})\n"
response += "\nThese preferences suggest you might enjoy:\n"
response += "- Similar books/movies in the same genre\n"
response += "- Creative projects related to these stories\n"
response += "- Analyzing themes or characters in your schoolwork"
return response
def _generate_help_response(self) -> str:
"""Generate help response with available commands."""
return ("""I can help with:
- **Study tips**: "How should I study for math?"
- **Grade information**: "What's my GPA?"
- **Course advice**: "Show me my course history"
- **Interest suggestions**: "What clubs match my interests?"
- **General advice**: "How can I improve my grades?"
Try asking about any of these topics!""")
# Initialize teaching assistant
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="Student Learning Assistant") as app:
# Session state
session_token = gr.State(value=generate_session_token())
profile_manager.set_session(session_token.value)
# Custom CSS for better styling
app.css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
}
.tab {
padding: 20px;
border-radius: 8px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.progress-bar {
height: 5px;
background: linear-gradient(to right, #4CAF50, #8BC34A);
margin-bottom: 15px;
border-radius: 3px;
}
.quiz-question {
margin-bottom: 15px;
padding: 15px;
background: #f5f5f5;
border-radius: 5px;
}
.profile-card {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 15px;
margin-bottom: 15px;
background: white;
}
.chatbot {
min-height: 500px;
}
"""
gr.Markdown("""
# Student Learning Assistant
**Your personalized education companion**
Complete each step to get customized learning recommendations.
""")
# Progress tracker
with gr.Row():
with gr.Column(scale=1):
step1 = gr.Button("1. Upload Transcript", variant="primary")
with gr.Column(scale=1):
step2 = gr.Button("2. Learning Style Quiz")
with gr.Column(scale=1):
step3 = gr.Button("3. Personal Questions")
with gr.Column(scale=1):
step4 = gr.Button("4. Save & Review")
with gr.Column(scale=1):
step5 = gr.Button("5. AI Assistant")
# Main tabs
with gr.Tabs() as tabs:
# ===== TAB 1: Transcript Upload =====
with gr.Tab("Transcript Upload", id=0) as tab1:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Upload Your Transcript")
gr.Markdown("Upload a PDF or image of your academic transcript to analyze your courses and GPA.")
with gr.Group():
transcript_file = gr.File(
label="Transcript (PDF or Image)",
file_types=ALLOWED_FILE_TYPES,
type="filepath"
)
upload_btn = gr.Button("Upload & Analyze", variant="primary")
gr.Markdown("""
**Supported Formats**: PDF, PNG, JPG
**Note**: Your file is processed locally and not stored permanently.
""")
with gr.Column(scale=2):
transcript_output = gr.Textbox(
label="Transcript Analysis",
lines=20,
interactive=False
)
transcript_data = gr.State()
upload_btn.click(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
# ===== TAB 2: Learning Style Quiz =====
with gr.Tab("Learning Style Quiz", id=1) as tab2:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 2: Discover Your Learning Style")
gr.Markdown("Complete this 20-question quiz to identify whether you're a visual, auditory, reading/writing, or kinesthetic learner.")
progress = gr.HTML("<div class='progress-bar' style='width: 0%'></div>")
quiz_submit = gr.Button("Submit Quiz", variant="primary")
with gr.Column(scale=2):
quiz_components = []
with gr.Accordion("Quiz Questions", open=True):
for i, (question, options) in enumerate(zip(learning_style_quiz.questions, learning_style_quiz.options)):
with gr.Group(elem_classes="quiz-question"):
q = gr.Radio(
options,
label=f"{i+1}. {question}",
show_label=True
)
quiz_components.append(q)
learning_output = gr.Markdown(
label="Your Learning Style Results",
visible=False
)
# Update progress bar as questions are answered
for component in quiz_components:
component.change(
fn=lambda *answers: {
progress: gr.HTML(
f"<div class='progress-bar' style='width: {sum(1 for a in answers if a)/len(answers)*100}%'></div>"
)
},
inputs=quiz_components,
outputs=progress
)
quiz_submit.click(
fn=lambda *answers: learning_style_quiz.evaluate_quiz(*answers),
inputs=quiz_components,
outputs=learning_output
).then(
fn=lambda: gr.Markdown(visible=True),
outputs=learning_output
)
# ===== TAB 3: Personal Questions =====
with gr.Tab("Personal Profile", id=2) as tab3:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 3: Tell Us About Yourself")
gr.Markdown("This information helps us provide personalized recommendations.")
with gr.Group():
name = gr.Textbox(label="Full Name", placeholder="Your name")
age = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, precision=0)
interests = gr.Textbox(
label="Your Interests/Hobbies",
placeholder="e.g., Science, Music, Sports, Art..."
)
gr.Markdown("### Favorites")
with gr.Group():
movie = gr.Textbox(label="Favorite Movie")
movie_reason = gr.Textbox(label="Why do you like it?", lines=2)
show = gr.Textbox(label="Favorite TV Show")
show_reason = gr.Textbox(label="Why do you like it?", lines=2)
book = gr.Textbox(label="Favorite Book")
book_reason = gr.Textbox(label="Why do you like it?", lines=2)
character = gr.Textbox(label="Favorite Character (from any story)")
character_reason = gr.Textbox(label="Why do you like them?", lines=2)
with gr.Column(scale=1):
gr.Markdown("### Additional Information")
blog_checkbox = gr.Checkbox(
label="Would you like to write a short blog about your learning experiences?",
value=False
)
blog_text = gr.Textbox(
label="Your Learning Blog",
placeholder="Write about your learning journey, challenges, goals...",
lines=8,
visible=False
)
blog_checkbox.change(
lambda x: gr.update(visible=x),
inputs=blog_checkbox,
outputs=blog_text
)
# ===== TAB 4: Save & Review =====
with gr.Tab("Save Profile", id=3) as tab4:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 4: Review & Save Your Profile")
gr.Markdown("Verify your information before saving. You can return to previous steps to make changes.")
save_btn = gr.Button("Save Profile", variant="primary")
# Profile management section
with gr.Group():
load_profile_dropdown = gr.Dropdown(
label="Load Existing Profile",
choices=profile_manager.list_profiles(session_token.value),
visible=bool(profile_manager.list_profiles(session_token.value))
)
with gr.Row():
load_btn = gr.Button("Load", visible=bool(profile_manager.list_profiles(session_token.value)))
delete_btn = gr.Button("Delete", variant="stop", visible=bool(profile_manager.list_profiles(session_token.value)))
clear_btn = gr.Button("Clear Form")
with gr.Column(scale=2):
output_summary = gr.Markdown(
"Your profile summary will appear here after saving.",
label="Profile Summary"
)
# Save profile
save_btn.click(
fn=profile_manager.save_profile,
inputs=[
name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text
],
outputs=output_summary
).then(
fn=lambda: profile_manager.list_profiles(session_token.value),
outputs=load_profile_dropdown
).then(
fn=lambda: gr.update(visible=True),
outputs=load_btn
).then(
fn=lambda: gr.update(visible=True),
outputs=delete_btn
)
# Load profile
load_btn.click(
fn=lambda name: profile_manager.load_profile(name, session_token.value),
inputs=load_profile_dropdown,
outputs=output_summary
)
# Delete profile
def delete_profile(name, session_token):
if not name:
raise gr.Error("Please select a profile to delete")
try:
profile_path = profile_manager.get_profile_path(name)
if profile_path.exists():
profile_path.unlink()
return "Profile deleted successfully", ""
except Exception as e:
raise gr.Error(f"Error deleting profile: {str(e)}")
delete_btn.click(
fn=delete_profile,
inputs=[load_profile_dropdown, session_token],
outputs=[output_summary, load_profile_dropdown]
).then(
fn=lambda: gr.update(
choices=profile_manager.list_profiles(session_token.value),
visible=bool(profile_manager.list_profiles(session_token.value))
),
outputs=load_profile_dropdown
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=load_btn
).then(
fn=lambda: gr.update(visible=bool(profile_manager.list_profiles(session_token.value))),
outputs=delete_btn
)
# Clear form
clear_btn.click(
fn=lambda: [gr.update(value="") for _ in range(12)],
outputs=[
name, age, interests,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason,
blog_text
]
)
# ===== TAB 5: AI Teaching Assistant =====
with gr.Tab("AI Assistant", id=4) as tab5:
gr.Markdown("## Your Personalized Learning Assistant")
gr.Markdown("Ask me anything about studying, your courses, grades, or learning strategies.")
# Chat interface with session token
chatbot = gr.ChatInterface(
fn=lambda msg, hist: teaching_assistant.generate_response(msg, hist, session_token.value),
examples=[
"How should I study for my next math test?",
"What's my current GPA?",
"Show me my course history",
"How can I improve my grades in science?",
"What study methods match my learning style?"
],
title=""
)
# Tab navigation logic
def navigate_to_tab(tab_index: int):
return gr.Tabs(selected=tab_index)
step1.click(
fn=lambda: navigate_to_tab(0),
outputs=tabs
)
step2.click(
fn=lambda: navigate_to_tab(1),
outputs=tabs
)
step3.click(
fn=lambda: navigate_to_tab(2),
outputs=tabs
)
step4.click(
fn=lambda: navigate_to_tab(3),
outputs=tabs
)
step5.click(
fn=lambda: navigate_to_tab(4),
outputs=tabs
)
return app
# Create the interface
app = create_interface()
# For Hugging Face Spaces deployment
if __name__ == "__main__":
app.launch()
|