Spaces:
Running
Running
File size: 20,920 Bytes
b57ed91 3e64737 b57ed91 3e64737 66cb301 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 66cb301 6f8fb84 3e64737 66cb301 6f8fb84 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 3e64737 0e95f56 3e64737 0e95f56 6f8fb84 0e95f56 3e64737 0e95f56 3e64737 0e95f56 3e64737 6f8fb84 3e64737 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 3e64737 6f8fb84 0e95f56 6f8fb84 431b892 6f8fb84 431b892 6f8fb84 431b892 6f8fb84 431b892 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 0ecc813 32164a9 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 3e64737 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 0e95f56 6f8fb84 3e64737 6f8fb84 0e95f56 6e6aad7 6f8fb84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
# ========== NER MODEL HANDLING FOR SPACES ==========
try:
from transformers import pipeline
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
except ImportError:
ner_pipeline = None
print("NER model not available - continuing without it")
except Exception as e:
ner_pipeline = None
print(f"Could not load NER model: {e}")
# ========== TRANSCRIPT PARSING ==========
def extract_gpa(text, gpa_type):
pattern = rf'{gpa_type}\s*([\d\.]+)'
match = re.search(pattern, text)
return match.group(1) if match else "N/A"
def extract_courses_from_table(text):
course_pattern = re.compile(
r'(\d{4}-\d{4})\s*' # School year
r'\|?\s*(\d+)\s*' # Grade level
r'\|?\s*([A-Z0-9]+)\s*' # Course code
r'\|?\s*([^\|]+?)\s*' # Course name (captures until next pipe)
r'(?:\|\s*[^\|]*){2}' # Skip Term and DstNumber
r'\|\s*([A-FW]?)\s*' # Grade (FG column)
r'(?:\|\s*[^\|]*)' # Skip Incl column
r'\|\s*([\d\.]+|inProgress)' # Credits
)
courses_by_grade = defaultdict(list)
for match in re.finditer(course_pattern, text):
year_range, grade_level, course_code, course_name, grade, credits = match.groups()
course_name = course_name.strip()
if 'DE:' in course_name:
course_name = course_name.replace('DE:', 'Dual Enrollment:')
if 'AP' in course_name:
course_name = course_name.replace('AP', 'AP ')
course_info = {
'name': f"{course_code} {course_name}",
'year': year_range,
'credits': credits
}
if grade and grade.strip():
course_info['grade'] = grade.strip()
courses_by_grade[grade_level].append(course_info)
return courses_by_grade
def parse_transcript(file):
if file.name.endswith('.pdf'):
text = ''
reader = PdfReader(file)
for page in reader.pages:
text += page.extract_text() + '\n'
gpa_data = {
'weighted': extract_gpa(text, 'Weighted GPA'),
'unweighted': extract_gpa(text, 'Un-weighted GPA')
}
grade_match = re.search(r'Current Grade:\s*(\d+)', text)
grade_level = grade_match.group(1) if grade_match else "Unknown"
courses_by_grade = extract_courses_from_table(text)
output_text = f"Student Transcript Summary\n{'='*40}\n"
output_text += f"Current Grade Level: {grade_level}\n"
output_text += f"Weighted GPA: {gpa_data['weighted']}\n"
output_text += f"Unweighted GPA: {gpa_data['unweighted']}\n\n"
output_text += "Course History:\n{'='*40}\n"
for grade in sorted(courses_by_grade.keys(), key=int):
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
for course in courses_by_grade[grade]:
output_text += f"- {course['name']}"
if 'grade' in course and course['grade']:
output_text += f" (Grade: {course['grade']})"
if 'credits' in course:
output_text += f" | Credits: {course['credits']}"
output_text += f" | Year: {course['year']}\n"
return output_text, {
"gpa": gpa_data,
"grade_level": grade_level,
"courses": dict(courses_by_grade)
}
else:
return "Unsupported file format (PDF only for transcript parsing)", None
# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
"When you study for a test, you prefer to:",
"When you need directions to a new place, you prefer:",
"When you learn a new skill, you prefer to:",
"When you're trying to concentrate, you:",
"When you meet new people, you remember them by:",
"When you're assembling furniture or a gadget, you:",
"When choosing a restaurant, you rely most on:",
"When you're in a waiting room, you typically:",
"When giving someone instructions, you tend to:",
"When you're trying to recall information, you:",
"When you're at a museum or exhibit, you:",
"When you're learning a new language, you prefer:",
"When you're taking notes in class, you:",
"When you're explaining something complex, you:",
"When you're at a party, you enjoy:",
"When you're trying to remember a phone number, you:",
"When you're relaxing, you prefer to:",
"When you're learning to use new software, you:",
"When you're giving a presentation, you rely on:",
"When you're solving a difficult problem, you:"
]
learning_style_options = [
["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
]
def learning_style_quiz(*answers):
scores = {
"Visual": 0,
"Auditory": 0,
"Reading/Writing": 0,
"Kinesthetic": 0
}
for i, answer in enumerate(answers):
if answer == learning_style_options[i][0]:
scores["Reading/Writing"] += 1
elif answer == learning_style_options[i][1]:
scores["Auditory"] += 1
elif answer == learning_style_options[i][2]:
scores["Visual"] += 1
elif answer == learning_style_options[i][3]:
scores["Kinesthetic"] += 1
max_score = max(scores.values())
total_questions = len(learning_style_questions)
percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
result = "Your Learning Style Results:\n\n"
for style, score in sorted_styles:
result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
result += "\n"
primary_styles = [style for style, score in scores.items() if score == max_score]
if len(primary_styles) == 1:
result += f"Your primary learning style is: {primary_styles[0]}\n\n"
if primary_styles[0] == "Visual":
result += "Tips for Visual Learners:\n"
result += "- Use color coding in your notes\n"
result += "- Create mind maps and diagrams\n"
result += "- Watch educational videos\n"
result += "- Use flashcards with images\n"
elif primary_styles[0] == "Auditory":
result += "Tips for Auditory Learners:\n"
result += "- Record lectures and listen to them\n"
result += "- Participate in study groups\n"
result += "- Explain concepts out loud to yourself\n"
result += "- Use rhymes or songs to remember information\n"
elif primary_styles[0] == "Reading/Writing":
result += "Tips for Reading/Writing Learners:\n"
result += "- Write detailed notes\n"
result += "- Create summaries in your own words\n"
result += "- Read textbooks and articles\n"
result += "- Make lists to organize information\n"
else:
result += "Tips for Kinesthetic Learners:\n"
result += "- Use hands-on activities\n"
result += "- Take frequent movement breaks\n"
result += "- Create physical models\n"
result += "- Associate information with physical actions\n"
else:
result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
result += "You may benefit from combining different learning approaches.\n"
return result
# ========== PROFILE MANAGEMENT ==========
def save_profile(name, age, interests, transcript, learning_style,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog):
age = int(age) if age else 0
favorites = {
"movie": movie,
"movie_reason": movie_reason,
"show": show,
"show_reason": show_reason,
"book": book,
"book_reason": book_reason,
"character": character,
"character_reason": character_reason
}
data = {
"name": name,
"age": age,
"interests": interests,
"transcript": transcript,
"learning_style": learning_style,
"favorites": favorites,
"blog": blog
}
os.makedirs("student_profiles", exist_ok=True)
json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
with open(json_path, "w") as f:
json.dump(data, f, indent=2)
markdown_summary = f"""### Student Profile: {name}
**Age:** {age}
**Interests:** {interests}
**Learning Style:** {learning_style}
#### Transcript:
{transcript_display(transcript)}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
return markdown_summary
def transcript_display(transcript_dict):
if not transcript_dict or "courses" not in transcript_dict:
return "No course information available"
display = "### Detailed Course History\n"
courses_by_grade = transcript_dict["courses"]
if isinstance(courses_by_grade, dict):
for grade in sorted(courses_by_grade.keys(), key=int):
display += f"\n**Grade {grade}**\n"
for course in courses_by_grade[grade]:
display += f"- {course['name']}"
if 'grade' in course and course['grade']:
display += f" (Grade: {course['grade']})"
if 'credits' in course:
display += f" | Credits: {course['credits']}"
display += f" | Year: {course['year']}\n"
if 'gpa' in transcript_dict:
gpa = transcript_dict['gpa']
display += "\n**GPA Information**\n"
display += f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
display += f"- Weighted: {gpa.get('weighted', 'N/A')}\n"
return display
def load_profile():
if not os.path.exists("student_profiles"):
return {}
files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
if files:
with open(os.path.join("student_profiles", files[0]), "r") as f:
return json.load(f)
return {}
def generate_response(message, history):
profile = load_profile()
if not profile:
return "Please complete and save your profile first using the previous tabs."
learning_style = profile.get("learning_style", "")
grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
gpa = profile.get("transcript", {}).get("gpa", {})
interests = profile.get("interests", "")
courses = profile.get("transcript", {}).get("courses", {})
greetings = ["hi", "hello", "hey"]
study_help = ["study", "learn", "prepare", "exam"]
grade_help = ["grade", "gpa", "score"]
interest_help = ["interest", "hobby", "passion"]
course_help = ["courses", "classes", "transcript", "schedule"]
if any(greet in message.lower() for greet in greetings):
return f"Hello {profile.get('name', 'there')}! How can I help you today?"
elif any(word in message.lower() for word in study_help):
if "Visual" in learning_style:
response = ("Based on your visual learning style, I recommend:\n"
"- Creating mind maps or diagrams\n"
"- Using color-coded notes\n"
"- Watching educational videos")
elif "Auditory" in learning_style:
response = ("Based on your auditory learning style, I recommend:\n"
"- Recording lectures and listening to them\n"
"- Participating in study groups\n"
"- Explaining concepts out loud")
elif "Reading/Writing" in learning_style:
response = ("Based on your reading/writing learning style, I recommend:\n"
"- Writing detailed notes\n"
"- Creating summaries in your own words\n"
"- Reading textbooks and articles")
elif "Kinesthetic" in learning_style:
response = ("Based on your kinesthetic learning style, I recommend:\n"
"- Hands-on practice\n"
"- Creating physical models\n"
"- Taking frequent movement breaks")
else:
response = ("Here are some general study tips:\n"
"- Break study sessions into 25-minute chunks\n"
"- Review material regularly\n"
"- Teach concepts to someone else")
return response
elif any(word in message.lower() for word in grade_help):
return (f"Your GPA information:\n"
f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n"
"To improve your grades, try:\n"
"- Setting specific goals\n"
"- Meeting with teachers\n"
"- Developing a study schedule")
elif any(word in message.lower() for word in interest_help):
return (f"I see you're interested in: {interests}\n\n"
"You might want to:\n"
"- Find clubs or activities related to these interests\n"
"- Explore career paths that align with them")
elif any(word in message.lower() for word in course_help):
response = "Here's a summary of your courses:\n"
for grade in sorted(courses.keys(), key=int):
response += f"\nGrade {grade}:\n"
for course in courses[grade]:
response += f"- {course['name']}"
if 'grade' in course:
response += f" (Grade: {course['grade']})"
response += "\n"
return response
elif "help" in message.lower():
return ("I can help with:\n"
"- Study tips based on your learning style\n"
"- GPA and grade information\n"
"- Course history and schedules\n"
"- General academic advice\n\n"
"Try asking about study strategies or your grades!")
else:
return ("I'm your personalized teaching assistant. "
"I can help with study tips, grade information, and academic advice. "
"Try asking about how to study for your classes!")
# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
with gr.Tab("Step 1: Upload Transcript"):
gr.Markdown("### Upload your transcript (PDF recommended for best results)")
transcript_file = gr.File(label="Transcript file", file_types=[".pdf"])
transcript_output = gr.Textbox(label="Transcript Results", lines=20)
transcript_data = gr.State()
transcript_file.change(
fn=parse_transcript,
inputs=transcript_file,
outputs=[transcript_output, transcript_data]
)
with gr.Tab("Step 2: Learning Style Quiz"):
gr.Markdown("### Learning Style Quiz (20 Questions)")
quiz_components = []
for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
quiz_components.append(gr.Radio(options, label=f"{i+1}. {question}"))
learning_output = gr.Textbox(label="Your Learning Style", lines=15)
gr.Button("Submit Quiz").click(
fn=learning_style_quiz,
inputs=quiz_components,
outputs=learning_output
)
with gr.Tab("Step 3: Personal Questions"):
name = gr.Textbox(label="What's your name?")
age = gr.Number(label="How old are you?", precision=0)
interests = gr.Textbox(label="What are your interests?")
movie = gr.Textbox(label="Favorite movie?")
movie_reason = gr.Textbox(label="Why do you like that movie?")
show = gr.Textbox(label="Favorite TV show?")
show_reason = gr.Textbox(label="Why do you like that show?")
book = gr.Textbox(label="Favorite book?")
book_reason = gr.Textbox(label="Why do you like that book?")
character = gr.Textbox(label="Favorite character?")
character_reason = gr.Textbox(label="Why do you like that character?")
blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)
with gr.Tab("Step 4: Save & Review"):
output_summary = gr.Markdown()
save_btn = gr.Button("Save Profile")
save_btn.click(
fn=save_profile,
inputs=[name, age, interests, transcript_data, learning_output,
movie, movie_reason, show, show_reason,
book, book_reason, character, character_reason, blog_text],
outputs=output_summary
)
with gr.Tab("🤖 AI Teaching Assistant"):
gr.Markdown("## Your Personalized Learning Assistant")
chatbot = gr.ChatInterface(
fn=generate_response,
examples=[
"How should I study for my next test?",
"What's my GPA information?",
"Show me my course history",
"How can I improve my grades?"
]
)
app.launch()
|