File size: 16,132 Bytes
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b40922
 
 
 
 
 
6e6aad7
3b40922
 
 
 
 
 
 
6e6aad7
3b40922
 
 
 
 
 
 
 
 
 
 
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
efb4698
3b40922
 
 
6e6aad7
3b40922
6e6aad7
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
8912b3c
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7de1f
6e6aad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a68c620
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict

# ========== TRANSCRIPT PARSING FUNCTIONS ==========
def extract_courses_with_grade_levels(text):
    grade_level_pattern = r"(Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)"
    grade_match = re.search(grade_level_pattern, text, re.IGNORECASE)
    current_grade_level = grade_match.group(2) if grade_match else "Unknown"

    course_pattern = r"""
        (?:^|\n)
        (?: (Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)\s*[\n-]* )?
        (
            (?:[A-Z]{2,}\s?\d{3})
            |
            [A-Z][a-z]+(?:\s[A-Z][a-z]+)*
        )
        \s*
        (?: [:\-]?\s* ([A-F][+-]?|\d{2,3}%)? )?
    """

    courses_by_grade = defaultdict(list)
    current_grade = current_grade_level

    for match in re.finditer(course_pattern, text, re.VERBOSE | re.MULTILINE):
        grade_context, grade_level, course, grade = match.groups()

        if grade_context:
            current_grade = grade_level

        if course:
            course_info = {"course": course.strip()}
            if grade:
                course_info["grade"] = grade.strip()
            courses_by_grade[current_grade].append(course_info)

    return dict(courses_by_grade)

def parse_transcript(file):
    if file.name.endswith('.csv'):
        df = pd.read_csv(file)
    elif file.name.endswith('.xlsx'):
        df = pd.read_excel(file)
    elif file.name.endswith('.pdf'):
        text = ''
        reader = PdfReader(file)
        for page in reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + '\n'

        # Grade level extraction
        grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
        grade_level = grade_match.group(2) if grade_match else "Unknown"

        # Enhanced GPA extraction
        gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
        gpa_patterns = [
            r'Weighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
            r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
            r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'Cumulative GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
            r'GPA[\s:]*(\d\.\d{1,2})'
        ]
        for pattern in gpa_patterns:
            for match in re.finditer(pattern, text, re.IGNORECASE):
                gpa_value = match.group(1)
                if 'weighted' in pattern.lower():
                    gpa_data['weighted'] = gpa_value
                elif 'unweighted' in pattern.lower():
                    gpa_data['unweighted'] = gpa_value
                else:
                    if gpa_data['unweighted'] == "N/A":
                        gpa_data['unweighted'] = gpa_value
                    if gpa_data['weighted'] == "N/A":
                        gpa_data['weighted'] = gpa_value

        courses_by_grade = extract_courses_with_grade_levels(text)

        output_text = f"Grade Level: {grade_level}\n\n"
        if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
            output_text += "GPA Information:\n"
            if gpa_data['unweighted'] != "N/A":
                output_text += f"- Unweighted GPA: {gpa_data['unweighted']}\n"
            if gpa_data['weighted'] != "N/A":
                output_text += f"- Weighted GPA: {gpa_data['weighted']}\n"
        else:
            output_text += "No GPA information found\n"

        output_text += "\n(Courses not shown here)"

        return output_text, {
            "gpa": gpa_data,
            "grade_level": grade_level,
            "courses": courses_by_grade
        }
    else:
        return "Unsupported file format", None

    # For CSV/XLSX fallback
    gpa = "N/A"
    for col in ['GPA', 'Grade Point Average', 'Cumulative GPA']:
        if col in df.columns:
            gpa = df[col].iloc[0] if isinstance(df[col].iloc[0], (float, int)) else "N/A"
            break

    grade_level = "N/A"
    for col in ['Grade Level', 'Grade', 'Class', 'Year']:
        if col in df.columns:
            grade_level = df[col].iloc[0]
            break

    courses = []
    for col in ['Course', 'Subject', 'Course Name', 'Class']:
        if col in df.columns:
            courses = df[col].tolist()
            break

    output_text = f"Grade Level: {grade_level}\nGPA: {gpa}\n\nCourses:\n"
    output_text += "\n".join(f"- {course}" for course in courses)

    return output_text, {
        "gpa": {"unweighted": gpa, "weighted": "N/A"},
        "grade_level": grade_level,
        "courses": courses
    }

# ========== LEARNING STYLE QUIZ ==========
learning_style_questions = [
    "When you study for a test, you prefer to:",
    "When you need directions to a new place, you prefer:",
    "When you learn a new skill, you prefer to:",
    "When you're trying to concentrate, you:",
    "When you meet new people, you remember them by:"
]

learning_style_options = [
    ["Read the textbook (Reading/Writing)", "Listen to lectures (Auditory)", "Use diagrams/charts (Visual)", "Practice problems (Kinesthetic)"],
    ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
    ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
    ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
    ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"]
]

def learning_style_quiz(*answers):
    scores = {
        "Visual": 0,
        "Auditory": 0,
        "Reading/Writing": 0,
        "Kinesthetic": 0
    }
    
    for i, answer in enumerate(answers):
        if answer == learning_style_options[i][0]:
            scores["Reading/Writing"] += 1
        elif answer == learning_style_options[i][1]:
            scores["Auditory"] += 1
        elif answer == learning_style_options[i][2]:
            scores["Visual"] += 1
        elif answer == learning_style_options[i][3]:
            scores["Kinesthetic"] += 1
    
    max_score = max(scores.values())
    dominant_styles = [style for style, score in scores.items() if score == max_score]
    
    if len(dominant_styles) == 1:
        return f"Your primary learning style is: {dominant_styles[0]}"
    else:
        return f"You have multiple strong learning styles: {', '.join(dominant_styles)}"

# ========== SAVE STUDENT PROFILE FUNCTION ==========
def save_profile(name, age, interests, transcript, learning_style, movie, movie_reason, show, show_reason, book, book_reason, character, character_reason, blog):
    # Convert age to int if it's a numpy number (from gradio Number input)
    age = int(age) if age else 0
    
    favorites = {
        "movie": movie,
        "movie_reason": movie_reason,
        "show": show,
        "show_reason": show_reason,
        "book": book,
        "book_reason": book_reason,
        "character": character,
        "character_reason": character_reason
    }
    
    data = {
        "name": name,
        "age": age,
        "interests": interests,
        "transcript": transcript,
        "learning_style": learning_style,
        "favorites": favorites,
        "blog": blog
    }
    
    os.makedirs("student_profiles", exist_ok=True)
    json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
    with open(json_path, "w") as f:
        json.dump(data, f, indent=2)

    markdown_summary = f"""### Student Profile: {name}
**Age:** {age}  
**Interests:** {interests}  
**Learning Style:** {learning_style}  
#### Transcript:
{transcript_display(transcript)}
#### Favorites:
- Movie: {favorites['movie']} ({favorites['movie_reason']})
- Show: {favorites['show']} ({favorites['show_reason']})
- Book: {favorites['book']} ({favorites['book_reason']})
- Character: {favorites['character']} ({favorites['character_reason']})
#### Blog:
{blog if blog else "_No blog provided_"}
"""
    return markdown_summary

def transcript_display(transcript_dict):
    if not transcript_dict:
        return "No transcript uploaded."
    if isinstance(transcript_dict, dict) and "courses" in transcript_dict:
        if isinstance(transcript_dict["courses"], dict):
            display = ""
            for grade_level, courses in transcript_dict["courses"].items():
                display += f"\n**Grade {grade_level}**\n"
                for course in courses:
                    display += f"- {course['course']}"
                    if 'grade' in course:
                        display += f" (Grade: {course['grade']})"
                    display += "\n"
            return display
        elif isinstance(transcript_dict["courses"], list):
            return "\n".join([f"- {course}" for course in transcript_dict["courses"]])
    return "No course information available"

# ========== AI TEACHING ASSISTANT ==========
def load_profile():
    if not os.path.exists("student_profiles"):
        return {}
    files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
    if files:
        with open(os.path.join("student_profiles", files[0]), "r") as f:
            return json.load(f)
    return {}

def generate_response(message, history):
    profile = load_profile()
    if not profile:
        return "Please complete and save your profile first using the previous tabs."
    
    # Get profile data
    learning_style = profile.get("learning_style", "")
    grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
    gpa = profile.get("transcript", {}).get("gpa", {})
    interests = profile.get("interests", "")
    
    # Common responses
    greetings = ["hi", "hello", "hey"]
    study_help = ["study", "learn", "prepare", "exam"]
    grade_help = ["grade", "gpa", "score"]
    interest_help = ["interest", "hobby", "passion"]
    
    if any(greet in message.lower() for greet in greetings):
        return f"Hello {profile.get('name', 'there')}! How can I help you today?"
    
    elif any(word in message.lower() for word in study_help):
        if "Visual" in learning_style:
            response = ("Based on your visual learning style, I recommend:\n"
                       "- Creating mind maps or diagrams\n"
                       "- Using color-coded notes\n"
                       "- Watching educational videos")
        elif "Auditory" in learning_style:
            response = ("Based on your auditory learning style, I recommend:\n"
                       "- Recording lectures and listening to them\n"
                       "- Participating in study groups\n"
                       "- Explaining concepts out loud")
        elif "Reading/Writing" in learning_style:
            response = ("Based on your reading/writing learning style, I recommend:\n"
                       "- Writing detailed notes\n"
                       "- Creating summaries in your own words\n"
                       "- Reading textbooks and articles")
        elif "Kinesthetic" in learning_style:
            response = ("Based on your kinesthetic learning style, I recommend:\n"
                       "- Hands-on practice\n"
                       "- Creating physical models\n"
                       "- Taking frequent movement breaks")
        else:
            response = ("Here are some general study tips:\n"
                       "- Break study sessions into 25-minute chunks\n"
                       "- Review material regularly\n"
                       "- Teach concepts to someone else")
        
        return response
    
    elif any(word in message.lower() for word in grade_help):
        return (f"Your GPA information:\n"
               f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
               f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n"
               "To improve your grades, try:\n"
               "- Setting specific goals\n"
               "- Meeting with teachers\n"
               "- Developing a study schedule")
    
    elif any(word in message.lower() for word in interest_help):
        return (f"I see you're interested in: {interests}\n\n"
               "You might want to:\n"
               "- Find clubs or activities related to these interests\n"
               "- Explore career paths that align with them")
    
    elif "help" in message.lower():
        return ("I can help with:\n"
               "- Study tips based on your learning style\n"
               "- GPA and grade information\n"
               "- General academic advice\n\n"
               "Try asking about study strategies or your grades!")
    
    else:
        return ("I'm your personalized teaching assistant. "
               "I can help with study tips, grade information, and academic advice. "
               "Try asking about how to study for your classes!")

# ========== GRADIO INTERFACE ==========
with gr.Blocks() as app:
    with gr.Tab("Step 1: Upload Transcript"):
        transcript_file = gr.File(label="Upload your transcript (CSV, Excel, or PDF)")
        transcript_output = gr.Textbox(label="Transcript Output")
        transcript_data = gr.State()
        transcript_file.change(fn=parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data])

    with gr.Tab("Step 2: Learning Style Quiz"):
        gr.Markdown("### Learning Style Quiz")
        quiz_components = []
        for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
            quiz_components.append(
                gr.Radio(options, label=f"{i+1}. {question}")
            )
        
        learning_output = gr.Textbox(label="Learning Style Result")
        gr.Button("Submit Quiz").click(
            learning_style_quiz,
            inputs=quiz_components,
            outputs=learning_output
        )

    with gr.Tab("Step 3: Personal Questions"):
        name = gr.Textbox(label="What's your name?")
        age = gr.Number(label="How old are you?", precision=0)
        interests = gr.Textbox(label="What are your interests?")
        movie = gr.Textbox(label="Favorite movie?")
        movie_reason = gr.Textbox(label="Why do you like that movie?")
        show = gr.Textbox(label="Favorite TV show?")
        show_reason = gr.Textbox(label="Why do you like that show?")
        book = gr.Textbox(label="Favorite book?")
        book_reason = gr.Textbox(label="Why do you like that book?")
        character = gr.Textbox(label="Favorite character?")
        character_reason = gr.Textbox(label="Why do you like that character?")
        blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
        blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
        blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)

    with gr.Tab("Step 4: Save & Review"):
        output_summary = gr.Markdown()
        save_btn = gr.Button("Save Profile")
        
        save_btn.click(
            fn=save_profile,
            inputs=[name, age, interests, transcript_data, learning_output,
                   movie, movie_reason, show, show_reason,
                   book, book_reason, character, character_reason, blog_text],
            outputs=output_summary
        )

    # AI Teaching Assistant Tab
    with gr.Tab("🤖 AI Teaching Assistant"):
        gr.Markdown("## Your Personalized Learning Assistant")
        chatbot = gr.ChatInterface(
            fn=generate_response,
            examples=[
                "How should I study for my next test?",
                "What's my GPA information?",
                "Help me with study strategies",
                "How can I improve my grades?"
            ]
        )

if __name__ == "__main__":
    app.launch()