File size: 2,733 Bytes
69839ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from transformers import pipeline

# Initialize the HuggingFace pipeline for text generation
generator = pipeline("text-generation", model="gpt-3")

def generate_resume(name, job_title, skills, experiences, education):
    resume_template = f"""
    Name: {name}
    Job Title: {job_title}
    Skills: {skills}
    Work Experience: {experiences}
    Education: {education}
    """

    # Use the generator to enhance the resume
    resume = generator(resume_template, max_length=400, num_return_sequences=1)[0]['generated_text']
    return resume

# Example usage
name = "John Doe"
job_title = "Software Engineer"
skills = "Python, Java, Machine Learning, Data Analysis"
experiences = "Worked as a software engineer at ABC Corp, developed web applications using Python."
education = "BSc in Computer Science from XYZ University."

resume = generate_resume(name, job_title, skills, experiences, education)
print(resume)

from transformers import pipeline

# Initialize the HuggingFace pipeline for text generation
generator = pipeline("text-generation", model="gpt-3")

def generate_interview_questions(job_role):
    prompt = f"Generate a list of interview questions for a {job_role} role."
    
    # Generate the questions using GPT
    questions = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
    return questions

# Example usage
job_role = "Data Scientist"
interview_questions = generate_interview_questions(job_role)
print(interview_questions)

from transformers import pipeline

# Initialize the HuggingFace pipeline for text generation
generator = pipeline("text-generation", model="gpt-3")

def generate_interview_questions(job_role):
    prompt = f"Generate a list of interview questions for a {job_role} role."
    
    # Generate the questions using GPT
    questions = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
    return questions

# Example usage
job_role = "Data Scientist"
interview_questions = generate_interview_questions(job_role)
print(interview_questions)

from transformers import pipeline

# Initialize the HuggingFace pipeline for text generation
generator = pipeline("text-generation", model="gpt-3")

def generate_career_advice(skills, interests):
    prompt = f"Given the skills {skills} and interests {interests}, suggest some career paths and advice."
    
    # Generate personalized career coaching advice
    career_advice = generator(prompt, max_length=200, num_return_sequences=1)[0]['generated_text']
    return career_advice

# Example usage
skills = "Data Science, Python, Machine Learning"
interests = "Artificial Intelligence, Data Analytics"
career_advice = generate_career_advice(skills, interests)
print(career_advice)