Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install transformers
|
2 |
+
pip install torch
|
3 |
+
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Initialize the HuggingFace pipeline for text generation
|
7 |
+
generator = pipeline("text-generation", model="gpt-3")
|
8 |
+
|
9 |
+
def generate_resume(name, job_title, skills, experiences, education):
|
10 |
+
resume_template = f"""
|
11 |
+
Name: {name}
|
12 |
+
Job Title: {job_title}
|
13 |
+
Skills: {skills}
|
14 |
+
Work Experience: {experiences}
|
15 |
+
Education: {education}
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Use the generator to enhance the resume
|
19 |
+
resume = generator(resume_template, max_length=400, num_return_sequences=1)[0]['generated_text']
|
20 |
+
return resume
|
21 |
+
|
22 |
+
# Example usage
|
23 |
+
name = "John Doe"
|
24 |
+
job_title = "Software Engineer"
|
25 |
+
skills = "Python, Java, Machine Learning, Data Analysis"
|
26 |
+
experiences = "Worked as a software engineer at ABC Corp, developed web applications using Python."
|
27 |
+
education = "BSc in Computer Science from XYZ University."
|
28 |
+
|
29 |
+
resume = generate_resume(name, job_title, skills, experiences, education)
|
30 |
+
print(resume)
|
31 |
+
|
32 |
+
from transformers import pipeline
|
33 |
+
|
34 |
+
# Initialize the HuggingFace pipeline for text generation
|
35 |
+
generator = pipeline("text-generation", model="gpt-3")
|
36 |
+
|
37 |
+
def generate_interview_questions(job_role):
|
38 |
+
prompt = f"Generate a list of interview questions for a {job_role} role."
|
39 |
+
|
40 |
+
# Generate the questions using GPT
|
41 |
+
questions = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
42 |
+
return questions
|
43 |
+
|
44 |
+
# Example usage
|
45 |
+
job_role = "Data Scientist"
|
46 |
+
interview_questions = generate_interview_questions(job_role)
|
47 |
+
print(interview_questions)
|
48 |
+
|
49 |
+
from transformers import pipeline
|
50 |
+
|
51 |
+
# Initialize the HuggingFace pipeline for text generation
|
52 |
+
generator = pipeline("text-generation", model="gpt-3")
|
53 |
+
|
54 |
+
def generate_interview_questions(job_role):
|
55 |
+
prompt = f"Generate a list of interview questions for a {job_role} role."
|
56 |
+
|
57 |
+
# Generate the questions using GPT
|
58 |
+
questions = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
59 |
+
return questions
|
60 |
+
|
61 |
+
# Example usage
|
62 |
+
job_role = "Data Scientist"
|
63 |
+
interview_questions = generate_interview_questions(job_role)
|
64 |
+
print(interview_questions)
|
65 |
+
|
66 |
+
from transformers import pipeline
|
67 |
+
|
68 |
+
# Initialize the HuggingFace pipeline for text generation
|
69 |
+
generator = pipeline("text-generation", model="gpt-3")
|
70 |
+
|
71 |
+
def generate_career_advice(skills, interests):
|
72 |
+
prompt = f"Given the skills {skills} and interests {interests}, suggest some career paths and advice."
|
73 |
+
|
74 |
+
# Generate personalized career coaching advice
|
75 |
+
career_advice = generator(prompt, max_length=200, num_return_sequences=1)[0]['generated_text']
|
76 |
+
return career_advice
|
77 |
+
|
78 |
+
# Example usage
|
79 |
+
skills = "Data Science, Python, Machine Learning"
|
80 |
+
interests = "Artificial Intelligence, Data Analytics"
|
81 |
+
career_advice = generate_career_advice(skills, interests)
|
82 |
+
print(career_advice)
|