DSatishchandra's picture
Update app.py
306e062 verified
raw
history blame contribute delete
5.88 kB
# app.py
import streamlit as st
import pandas as pd
import pydeck as pdk
import plotly.express as px
from datetime import datetime, timedelta
import random
from salesforce_integration import fetch_salesforce_data # Import the Salesforce integration
# Constants
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [12.9716, 77.5946]
}
# Helper Functions
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name, salesforce_data=None):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
alert_level = 'Green'
anomaly_details = []
if tilt_angle > 30 or vibration > 3:
alert_level = 'Yellow'
anomaly_details.append("Tilt or Vibration threshold exceeded.")
if tilt_angle > 40 or vibration > 4.5:
alert_level = 'Red'
anomaly_details.append("Critical tilt or vibration detected.")
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
if salesforce_data:
for pole_data in salesforce_data:
if pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}':
lat = pole_data['Latitude']
lon = pole_data['Longitude']
solar_kwh = pole_data['Solar (kWh)']
wind_kwh = pole_data['Wind (kWh)']
power_required = pole_data['Power Required (kWh)']
total_power = pole_data['Total Power (kWh)']
power_status = pole_data['Power Status']
camera_status = pole_data['Camera Status']
alert_level = pole_data['Alert Level']
health_score = pole_data['Health Score']
timestamp = pole_data['Last Checked']
break
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (Β°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': "; ".join(anomaly_details),
'Last Checked': timestamp if isinstance(timestamp, str) else timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# Streamlit UI (abridged for brevity)
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")
if selected_site in SITES:
salesforce_data = fetch_salesforce_data(selected_site)
# ... (rest of the Streamlit UI code)
with st.spinner(f"Simulating poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Summary Metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", site_df.shape[0])
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
# Table View
st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
with st.expander("Filter Options"):
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
st.dataframe(filtered_df, use_container_width=True)
# Charts
st.subheader("πŸ“Š Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("πŸ“ˆ Tilt vs. Vibration")
st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])
# Map with Red Alerts
st.subheader("πŸ“ Red Alert Pole Locations")
red_df = site_df[site_df['Alert Level'] == 'Red']
if not red_df.empty:
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=red_df,
get_position='[Longitude, Latitude]',
get_color='[255, 0, 0, 160]',
get_radius=100,
)
]
))
st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
else:
st.info("No red alerts at this time.")
else:
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")