Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
import pandas as pd | |
import pydeck as pdk | |
import plotly.express as px | |
from datetime import datetime, timedelta | |
import random | |
from salesforce_integration import fetch_salesforce_data # Import the Salesforce integration | |
# Constants | |
POLES_PER_SITE = 12 | |
SITES = { | |
"Hyderabad": [17.385044, 78.486671], | |
"Gadwal": [16.2351, 77.8052], | |
"Kurnool": [15.8281, 78.0373], | |
"Ballari": [12.9716, 77.5946] | |
} | |
# Helper Functions | |
def generate_location(base_lat, base_lon): | |
return [ | |
base_lat + random.uniform(-0.02, 0.02), | |
base_lon + random.uniform(-0.02, 0.02) | |
] | |
def simulate_pole(pole_id, site_name, salesforce_data=None): | |
lat, lon = generate_location(*SITES[site_name]) | |
solar_kwh = round(random.uniform(3.0, 7.5), 2) | |
wind_kwh = round(random.uniform(0.5, 2.0), 2) | |
power_required = round(random.uniform(4.0, 8.0), 2) | |
total_power = solar_kwh + wind_kwh | |
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient' | |
tilt_angle = round(random.uniform(0, 45), 2) | |
vibration = round(random.uniform(0, 5), 2) | |
camera_status = random.choice(['Online', 'Offline']) | |
alert_level = 'Green' | |
anomaly_details = [] | |
if tilt_angle > 30 or vibration > 3: | |
alert_level = 'Yellow' | |
anomaly_details.append("Tilt or Vibration threshold exceeded.") | |
if tilt_angle > 40 or vibration > 4.5: | |
alert_level = 'Red' | |
anomaly_details.append("Critical tilt or vibration detected.") | |
health_score = max(0, 100 - (tilt_angle + vibration * 10)) | |
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6)) | |
if salesforce_data: | |
for pole_data in salesforce_data: | |
if pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}': | |
lat = pole_data['Latitude'] | |
lon = pole_data['Longitude'] | |
solar_kwh = pole_data['Solar (kWh)'] | |
wind_kwh = pole_data['Wind (kWh)'] | |
power_required = pole_data['Power Required (kWh)'] | |
total_power = pole_data['Total Power (kWh)'] | |
power_status = pole_data['Power Status'] | |
camera_status = pole_data['Camera Status'] | |
alert_level = pole_data['Alert Level'] | |
health_score = pole_data['Health Score'] | |
timestamp = pole_data['Last Checked'] | |
break | |
return { | |
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}', | |
'Site': site_name, | |
'Latitude': lat, | |
'Longitude': lon, | |
'Solar (kWh)': solar_kwh, | |
'Wind (kWh)': wind_kwh, | |
'Power Required (kWh)': power_required, | |
'Total Power (kWh)': total_power, | |
'Power Status': power_status, | |
'Tilt Angle (Β°)': tilt_angle, | |
'Vibration (g)': vibration, | |
'Camera Status': camera_status, | |
'Health Score': round(health_score, 2), | |
'Alert Level': alert_level, | |
'Anomalies': "; ".join(anomaly_details), | |
'Last Checked': timestamp if isinstance(timestamp, str) else timestamp.strftime('%Y-%m-%d %H:%M:%S') | |
} | |
# Streamlit UI (abridged for brevity) | |
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide") | |
st.title("π Smart Renewable Pole Monitoring - Multi-Site") | |
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad") | |
if selected_site in SITES: | |
salesforce_data = fetch_salesforce_data(selected_site) | |
# ... (rest of the Streamlit UI code) | |
with st.spinner(f"Simulating poles at {selected_site}..."): | |
poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)] | |
df = pd.DataFrame(poles_data) | |
site_df = df[df['Site'] == selected_site] | |
# Summary Metrics | |
col1, col2, col3 = st.columns(3) | |
col1.metric("Total Poles", site_df.shape[0]) | |
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0]) | |
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0]) | |
# Table View | |
st.subheader(f"π Pole Data Table for {selected_site}") | |
with st.expander("Filter Options"): | |
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique()) | |
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique()) | |
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))] | |
st.dataframe(filtered_df, use_container_width=True) | |
# Charts | |
st.subheader("π Energy Generation Comparison") | |
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean()) | |
st.subheader("π Tilt vs. Vibration") | |
st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']]) | |
# Map with Red Alerts | |
st.subheader("π Red Alert Pole Locations") | |
red_df = site_df[site_df['Alert Level'] == 'Red'] | |
if not red_df.empty: | |
st.pydeck_chart(pdk.Deck( | |
initial_view_state=pdk.ViewState( | |
latitude=SITES[selected_site][0], | |
longitude=SITES[selected_site][1], | |
zoom=12, | |
pitch=50 | |
), | |
layers=[ | |
pdk.Layer( | |
'ScatterplotLayer', | |
data=red_df, | |
get_position='[Longitude, Latitude]', | |
get_color='[255, 0, 0, 160]', | |
get_radius=100, | |
) | |
] | |
)) | |
st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True) | |
else: | |
st.info("No red alerts at this time.") | |
else: | |
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari") | |