Spaces:
Sleeping
Sleeping
File size: 5,875 Bytes
306e062 eca7f1c 306e062 eca7f1c 306e062 eca7f1c 306e062 9377013 eca7f1c 306e062 b74770b eca7f1c b74770b eca7f1c 306e062 eca7f1c 9377013 eca7f1c e566f9b eca7f1c e566f9b eca7f1c e566f9b eca7f1c 9377013 306e062 9377013 eca7f1c e566f9b 306e062 eca7f1c 306e062 eca7f1c e566f9b eca7f1c 9377013 306e062 9377013 eca7f1c 9377013 eca7f1c e566f9b eca7f1c b74770b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# app.py
import streamlit as st
import pandas as pd
import pydeck as pdk
import plotly.express as px
from datetime import datetime, timedelta
import random
from salesforce_integration import fetch_salesforce_data # Import the Salesforce integration
# Constants
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [12.9716, 77.5946]
}
# Helper Functions
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name, salesforce_data=None):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
alert_level = 'Green'
anomaly_details = []
if tilt_angle > 30 or vibration > 3:
alert_level = 'Yellow'
anomaly_details.append("Tilt or Vibration threshold exceeded.")
if tilt_angle > 40 or vibration > 4.5:
alert_level = 'Red'
anomaly_details.append("Critical tilt or vibration detected.")
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
if salesforce_data:
for pole_data in salesforce_data:
if pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}':
lat = pole_data['Latitude']
lon = pole_data['Longitude']
solar_kwh = pole_data['Solar (kWh)']
wind_kwh = pole_data['Wind (kWh)']
power_required = pole_data['Power Required (kWh)']
total_power = pole_data['Total Power (kWh)']
power_status = pole_data['Power Status']
camera_status = pole_data['Camera Status']
alert_level = pole_data['Alert Level']
health_score = pole_data['Health Score']
timestamp = pole_data['Last Checked']
break
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (Β°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': "; ".join(anomaly_details),
'Last Checked': timestamp if isinstance(timestamp, str) else timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# Streamlit UI (abridged for brevity)
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("π Smart Renewable Pole Monitoring - Multi-Site")
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")
if selected_site in SITES:
salesforce_data = fetch_salesforce_data(selected_site)
# ... (rest of the Streamlit UI code)
with st.spinner(f"Simulating poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Summary Metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", site_df.shape[0])
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
# Table View
st.subheader(f"π Pole Data Table for {selected_site}")
with st.expander("Filter Options"):
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
st.dataframe(filtered_df, use_container_width=True)
# Charts
st.subheader("π Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("π Tilt vs. Vibration")
st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])
# Map with Red Alerts
st.subheader("π Red Alert Pole Locations")
red_df = site_df[site_df['Alert Level'] == 'Red']
if not red_df.empty:
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=red_df,
get_position='[Longitude, Latitude]',
get_color='[255, 0, 0, 160]',
get_radius=100,
)
]
))
st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
else:
st.info("No red alerts at this time.")
else:
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")
|