File size: 5,875 Bytes
306e062
eca7f1c
306e062
eca7f1c
306e062
eca7f1c
306e062
9377013
eca7f1c
306e062
b74770b
eca7f1c
 
 
 
b74770b
eca7f1c
 
306e062
eca7f1c
 
 
 
 
 
9377013
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
e566f9b
eca7f1c
 
e566f9b
eca7f1c
 
e566f9b
eca7f1c
 
 
 
9377013
 
306e062
 
 
 
 
 
 
 
 
 
 
 
9377013
 
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e566f9b
306e062
eca7f1c
 
306e062
eca7f1c
 
 
e566f9b
eca7f1c
 
9377013
306e062
9377013
eca7f1c
9377013
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e566f9b
eca7f1c
 
 
 
b74770b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# app.py
import streamlit as st
import pandas as pd
import pydeck as pdk
import plotly.express as px
from datetime import datetime, timedelta
import random
from salesforce_integration import fetch_salesforce_data  # Import the Salesforce integration

# Constants
POLES_PER_SITE = 12
SITES = {
    "Hyderabad": [17.385044, 78.486671],
    "Gadwal": [16.2351, 77.8052],
    "Kurnool": [15.8281, 78.0373],
    "Ballari": [12.9716, 77.5946]
}

# Helper Functions
def generate_location(base_lat, base_lon):
    return [
        base_lat + random.uniform(-0.02, 0.02),
        base_lon + random.uniform(-0.02, 0.02)
    ]

def simulate_pole(pole_id, site_name, salesforce_data=None):
    lat, lon = generate_location(*SITES[site_name])
    solar_kwh = round(random.uniform(3.0, 7.5), 2)
    wind_kwh = round(random.uniform(0.5, 2.0), 2)
    power_required = round(random.uniform(4.0, 8.0), 2)
    total_power = solar_kwh + wind_kwh
    power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'

    tilt_angle = round(random.uniform(0, 45), 2)
    vibration = round(random.uniform(0, 5), 2)
    camera_status = random.choice(['Online', 'Offline'])

    alert_level = 'Green'
    anomaly_details = []
    if tilt_angle > 30 or vibration > 3:
        alert_level = 'Yellow'
        anomaly_details.append("Tilt or Vibration threshold exceeded.")
    if tilt_angle > 40 or vibration > 4.5:
        alert_level = 'Red'
        anomaly_details.append("Critical tilt or vibration detected.")

    health_score = max(0, 100 - (tilt_angle + vibration * 10))
    timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))

    if salesforce_data:
        for pole_data in salesforce_data:
            if pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}':
                lat = pole_data['Latitude']
                lon = pole_data['Longitude']
                solar_kwh = pole_data['Solar (kWh)']
                wind_kwh = pole_data['Wind (kWh)']
                power_required = pole_data['Power Required (kWh)']
                total_power = pole_data['Total Power (kWh)']
                power_status = pole_data['Power Status']
                camera_status = pole_data['Camera Status']
                alert_level = pole_data['Alert Level']
                health_score = pole_data['Health Score']
                timestamp = pole_data['Last Checked']
                break

    return {
        'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
        'Site': site_name,
        'Latitude': lat,
        'Longitude': lon,
        'Solar (kWh)': solar_kwh,
        'Wind (kWh)': wind_kwh,
        'Power Required (kWh)': power_required,
        'Total Power (kWh)': total_power,
        'Power Status': power_status,
        'Tilt Angle (Β°)': tilt_angle,
        'Vibration (g)': vibration,
        'Camera Status': camera_status,
        'Health Score': round(health_score, 2),
        'Alert Level': alert_level,
        'Anomalies': "; ".join(anomaly_details),
        'Last Checked': timestamp if isinstance(timestamp, str) else timestamp.strftime('%Y-%m-%d %H:%M:%S')
    }

# Streamlit UI (abridged for brevity)
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")

selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")

if selected_site in SITES:
    salesforce_data = fetch_salesforce_data(selected_site)
    # ... (rest of the Streamlit UI code)
    
    with st.spinner(f"Simulating poles at {selected_site}..."):
        poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)]
        df = pd.DataFrame(poles_data)
        site_df = df[df['Site'] == selected_site]

    # Summary Metrics
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Poles", site_df.shape[0])
    col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
    col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])

    # Table View
    st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
    with st.expander("Filter Options"):
        alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
        camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())

    filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
    st.dataframe(filtered_df, use_container_width=True)

    # Charts
    st.subheader("πŸ“Š Energy Generation Comparison")
    st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())

    st.subheader("πŸ“ˆ Tilt vs. Vibration")
    st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])

    # Map with Red Alerts
    st.subheader("πŸ“ Red Alert Pole Locations")
    red_df = site_df[site_df['Alert Level'] == 'Red']
    if not red_df.empty:
        st.pydeck_chart(pdk.Deck(
            initial_view_state=pdk.ViewState(
                latitude=SITES[selected_site][0],
                longitude=SITES[selected_site][1],
                zoom=12,
                pitch=50
            ),
            layers=[
                pdk.Layer(
                    'ScatterplotLayer',
                    data=red_df,
                    get_position='[Longitude, Latitude]',
                    get_color='[255, 0, 0, 160]',
                    get_radius=100,
                )
            ]
        ))
        st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
    else:
        st.info("No red alerts at this time.")

else:
    st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")