Heat_map_pole30 / app.py
DSatishchandra's picture
Update app.py
741ceba verified
raw
history blame contribute delete
9.49 kB
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [15.1394, 76.9214]
}
# ---- Set Page Config (Must be first Streamlit command) ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
# ---- Custom CSS for Advanced UI ----
st.markdown("""
<style>
.stApp {
background-color: #f5f7fa;
}
.metric-card {
background-color: white;
padding: 15px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
text-align: center;
}
.red-alert {
background-color: #ffe6e6;
color: #d32f2f;
padding: 10px;
border-radius: 5px;
font-weight: bold;
}
.sidebar .sidebar-content {
background-color: #ffffff;
border-right: 1px solid #e0e0e0;
}
h1, h2, h3 {
color: #1a237e;
}
</style>
""", unsafe_allow_html=True)
# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
# Anomaly detection
anomalies = []
if solar_kwh < 4.0:
anomalies.append("Low Solar Output")
if wind_kwh < 0.7:
anomalies.append("Low Wind Output")
if tilt_angle > 30:
anomalies.append("Pole Tilt Risk")
if vibration > 3:
anomalies.append("Vibration Alert")
if camera_status == 'Offline':
anomalies.append("Camera Offline")
if power_status == 'Insufficient':
anomalies.append("Power Insufficient")
# Alert level logic
alert_level = 'Green'
if anomalies:
if tilt_angle > 40 or vibration > 4.5 or len(anomalies) > 1:
alert_level = 'Red'
else:
alert_level = 'Yellow'
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': ';'.join(anomalies) if anomalies else 'None',
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# ---- Streamlit UI ----
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
# Sidebar with enhanced controls
with st.sidebar:
st.header("🛠️ Control Panel")
with st.expander("Site Selection", expanded=True):
selected_site = st.selectbox(
"Select Site",
options=list(SITES.keys()),
index=0,
help="Choose a site to monitor poles."
)
with st.expander("Simulation Settings"):
num_poles = st.slider("Number of Poles per Site", 5, 50, POLES_PER_SITE)
simulate_faults = st.checkbox("Simulate Faults", value=True)
with st.expander("Filters"):
alert_filter = st.multiselect(
"Alert Level",
options=['Green', 'Yellow', 'Red'],
default=['Green', 'Yellow', 'Red']
)
camera_filter = st.multiselect(
"Camera Status",
options=['Online', 'Offline'],
default=['Online', 'Offline']
)
# Simulate data
if selected_site in SITES:
with st.spinner(f"Simulating {num_poles} poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(num_poles)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Tabs for different views
tab1, tab2, tab3, tab4 = st.tabs(["📊 Dashboard", "📋 Data Table", "📈 Charts", "📍 Map"])
with tab1:
# Dashboard with metrics
st.subheader("System Overview")
red_alerts_count = site_df[site_df['Alert Level'] == 'Red'].shape[0]
if red_alerts_count > 0:
st.markdown(f"<div class='red-alert'>🚨 {red_alerts_count} Red Alerts Detected! Immediate Action Required!</div>", unsafe_allow_html=True)
else:
st.success("✅ No Red Alerts Detected")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Total Poles", site_df.shape[0])
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Red Alerts", red_alerts_count, delta_color="inverse")
st.markdown("</div>", unsafe_allow_html=True)
with col3:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
st.markdown("</div>", unsafe_allow_html=True)
with col4:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Average Health Score", round(site_df['Health Score'].mean(), 2))
st.markdown("</div>", unsafe_allow_html=True)
# Red Alerts Summary
red_df = site_df[site_df['Alert Level'] == 'Red']
if not red_df.empty:
st.subheader("🚨 Critical Red Alerts")
st.dataframe(
red_df[['Pole ID', 'Anomalies', 'Tilt Angle (°)', 'Vibration (g)', 'Power Status', 'Camera Status', 'Health Score', 'Last Checked']],
use_container_width=True
)
csv = red_df.to_csv(index=False)
st.download_button(
label="Download Red Alerts CSV",
data=csv,
file_name=f"{selected_site}_red_alerts.csv",
mime="text/csv"
)
with tab2:
# Filtered Data Table
st.subheader(f"Pole Data for {selected_site}")
filtered_df = site_df[
(site_df['Alert Level'].isin(alert_filter)) &
(site_df['Camera Status'].isin(camera_filter))
]
# Conditional formatting for red alerts
def highlight_red_alerts(row):
return ['background-color: #ffe6e6' if row['Alert Level'] == 'Red' else '' for _ in row]
st.dataframe(
filtered_df[['Pole ID', 'Anomalies', 'Solar (kWh)', 'Wind (kWh)', 'Power Status', 'Tilt Angle (°)', 'Vibration (g)', 'Camera Status', 'Health Score', 'Alert Level', 'Last Checked']].style.apply(highlight_red_alerts, axis=1),
use_container_width=True
)
with tab3:
# Charts
st.subheader("Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("Tilt vs. Vibration")
scatter_data = site_df[['Tilt Angle (°)', 'Vibration (g)', 'Alert Level']].copy()
scatter_data['color'] = scatter_data['Alert Level'].map({
'Green': '[0, 255, 0, 160]',
'Yellow': '[255, 255, 0, 160]',
'Red': '[255, 0, 0, 160]'
})
st.scatter_chart(scatter_data[['Tilt Angle (°)', 'Vibration (g)']])
with tab4:
# Map with Red Alerts
st.subheader("Red Alert Pole Locations")
if not red_df.empty:
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=red_df,
get_position='[Longitude, Latitude]',
get_color='[255, 0, 0, 160]',
get_radius=100,
pickable=True,
auto_highlight=True
)
],
tooltip={
"html": "<b>Pole ID:</b> {Pole ID}<br><b>Anomalies:</b> {Anomalies}<br><b>Tilt:</b> {Tilt Angle (°)}°<br><b>Vibration:</b> {Vibration (g)}g<br><b>Health Score:</b> {Health Score}",
"style": {"backgroundColor": "white", "color": "#333"}
}
))
else:
st.info("No red alerts at this time.")
else:
st.error("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")