import random import pandas as pd import streamlit as st import pydeck as pdk from datetime import datetime, timedelta # ---- Constants ---- POLES_PER_SITE = 12 SITES = { "Hyderabad": [17.385044, 78.486671], "Gadwal": [16.2351, 77.8052], "Kurnool": [15.8281, 78.0373], "Ballari": [15.1394, 76.9214] } # ---- Set Page Config (Must be first Streamlit command) ---- st.set_page_config(page_title="Smart Pole Monitoring", layout="wide") # ---- Custom CSS for Advanced UI ---- st.markdown(""" """, unsafe_allow_html=True) # ---- Helper Functions ---- def generate_location(base_lat, base_lon): return [ base_lat + random.uniform(-0.02, 0.02), base_lon + random.uniform(-0.02, 0.02) ] def simulate_pole(pole_id, site_name): lat, lon = generate_location(*SITES[site_name]) solar_kwh = round(random.uniform(3.0, 7.5), 2) wind_kwh = round(random.uniform(0.5, 2.0), 2) power_required = round(random.uniform(4.0, 8.0), 2) total_power = solar_kwh + wind_kwh power_status = 'Sufficient' if total_power >= power_required else 'Insufficient' tilt_angle = round(random.uniform(0, 45), 2) vibration = round(random.uniform(0, 5), 2) camera_status = random.choice(['Online', 'Offline']) # Anomaly detection anomalies = [] if solar_kwh < 4.0: anomalies.append("Low Solar Output") if wind_kwh < 0.7: anomalies.append("Low Wind Output") if tilt_angle > 30: anomalies.append("Pole Tilt Risk") if vibration > 3: anomalies.append("Vibration Alert") if camera_status == 'Offline': anomalies.append("Camera Offline") if power_status == 'Insufficient': anomalies.append("Power Insufficient") # Alert level logic alert_level = 'Green' if anomalies: if tilt_angle > 40 or vibration > 4.5 or len(anomalies) > 1: alert_level = 'Red' else: alert_level = 'Yellow' health_score = max(0, 100 - (tilt_angle + vibration * 10)) timestamp = datetime.now() - timedelta(hours=random.randint(0, 6)) return { 'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}', 'Site': site_name, 'Latitude': lat, 'Longitude': lon, 'Solar (kWh)': solar_kwh, 'Wind (kWh)': wind_kwh, 'Power Required (kWh)': power_required, 'Total Power (kWh)': total_power, 'Power Status': power_status, 'Tilt Angle (°)': tilt_angle, 'Vibration (g)': vibration, 'Camera Status': camera_status, 'Health Score': round(health_score, 2), 'Alert Level': alert_level, 'Anomalies': ';'.join(anomalies) if anomalies else 'None', 'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S') } # ---- Streamlit UI ---- st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site") # Sidebar with enhanced controls with st.sidebar: st.header("🛠️ Control Panel") with st.expander("Site Selection", expanded=True): selected_site = st.selectbox( "Select Site", options=list(SITES.keys()), index=0, help="Choose a site to monitor poles." ) with st.expander("Simulation Settings"): num_poles = st.slider("Number of Poles per Site", 5, 50, POLES_PER_SITE) simulate_faults = st.checkbox("Simulate Faults", value=True) with st.expander("Filters"): alert_filter = st.multiselect( "Alert Level", options=['Green', 'Yellow', 'Red'], default=['Green', 'Yellow', 'Red'] ) camera_filter = st.multiselect( "Camera Status", options=['Online', 'Offline'], default=['Online', 'Offline'] ) # Simulate data if selected_site in SITES: with st.spinner(f"Simulating {num_poles} poles at {selected_site}..."): poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(num_poles)] df = pd.DataFrame(poles_data) site_df = df[df['Site'] == selected_site] # Tabs for different views tab1, tab2, tab3, tab4 = st.tabs(["📊 Dashboard", "📋 Data Table", "📈 Charts", "📍 Map"]) with tab1: # Dashboard with metrics st.subheader("System Overview") red_alerts_count = site_df[site_df['Alert Level'] == 'Red'].shape[0] if red_alerts_count > 0: st.markdown(f"
🚨 {red_alerts_count} Red Alerts Detected! Immediate Action Required!
", unsafe_allow_html=True) else: st.success("✅ No Red Alerts Detected") col1, col2, col3, col4 = st.columns(4) with col1: st.markdown("
", unsafe_allow_html=True) st.metric("Total Poles", site_df.shape[0]) st.markdown("
", unsafe_allow_html=True) with col2: st.markdown("
", unsafe_allow_html=True) st.metric("Red Alerts", red_alerts_count, delta_color="inverse") st.markdown("
", unsafe_allow_html=True) with col3: st.markdown("
", unsafe_allow_html=True) st.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0]) st.markdown("
", unsafe_allow_html=True) with col4: st.markdown("
", unsafe_allow_html=True) st.metric("Average Health Score", round(site_df['Health Score'].mean(), 2)) st.markdown("
", unsafe_allow_html=True) # Red Alerts Summary red_df = site_df[site_df['Alert Level'] == 'Red'] if not red_df.empty: st.subheader("🚨 Critical Red Alerts") st.dataframe( red_df[['Pole ID', 'Anomalies', 'Tilt Angle (°)', 'Vibration (g)', 'Power Status', 'Camera Status', 'Health Score', 'Last Checked']], use_container_width=True ) csv = red_df.to_csv(index=False) st.download_button( label="Download Red Alerts CSV", data=csv, file_name=f"{selected_site}_red_alerts.csv", mime="text/csv" ) with tab2: # Filtered Data Table st.subheader(f"Pole Data for {selected_site}") filtered_df = site_df[ (site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter)) ] # Conditional formatting for red alerts def highlight_red_alerts(row): return ['background-color: #ffe6e6' if row['Alert Level'] == 'Red' else '' for _ in row] st.dataframe( filtered_df[['Pole ID', 'Anomalies', 'Solar (kWh)', 'Wind (kWh)', 'Power Status', 'Tilt Angle (°)', 'Vibration (g)', 'Camera Status', 'Health Score', 'Alert Level', 'Last Checked']].style.apply(highlight_red_alerts, axis=1), use_container_width=True ) with tab3: # Charts st.subheader("Energy Generation Comparison") st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean()) st.subheader("Tilt vs. Vibration") scatter_data = site_df[['Tilt Angle (°)', 'Vibration (g)', 'Alert Level']].copy() scatter_data['color'] = scatter_data['Alert Level'].map({ 'Green': '[0, 255, 0, 160]', 'Yellow': '[255, 255, 0, 160]', 'Red': '[255, 0, 0, 160]' }) st.scatter_chart(scatter_data[['Tilt Angle (°)', 'Vibration (g)']]) with tab4: # Map with Red Alerts st.subheader("Red Alert Pole Locations") if not red_df.empty: st.pydeck_chart(pdk.Deck( initial_view_state=pdk.ViewState( latitude=SITES[selected_site][0], longitude=SITES[selected_site][1], zoom=12, pitch=50 ), layers=[ pdk.Layer( 'ScatterplotLayer', data=red_df, get_position='[Longitude, Latitude]', get_color='[255, 0, 0, 160]', get_radius=100, pickable=True, auto_highlight=True ) ], tooltip={ "html": "Pole ID: {Pole ID}
Anomalies: {Anomalies}
Tilt: {Tilt Angle (°)}°
Vibration: {Vibration (g)}g
Health Score: {Health Score}", "style": {"backgroundColor": "white", "color": "#333"} } )) else: st.info("No red alerts at this time.") else: st.error("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")