Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
api_token = os.getenv("HF_TOKEN") | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.memory import ConversationBufferMemory | |
from langchain_community.llms import HuggingFaceEndpoint | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Funções existentes (load_doc, create_db, initialize_llmchain, etc.) permanecem iguais... | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
# Ajuste na função conversation para suportar idioma | |
def conversation(qa_chain, message, history, language): | |
formatted_chat_history = format_chat_history(message, history) | |
# Generate response using QA chain | |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
# Ajustar resposta com base no idioma | |
if language == "Português": | |
# Aqui, idealmente, você usaria uma API de tradução ou o modelo geraria diretamente em português | |
# Como exemplo, adiciono uma mensagem fixa para demonstrar | |
response_answer = f"Resposta em português: {response_answer}" | |
else: | |
response_answer = f"Response in English: {response_answer}" | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def demo(): | |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>") | |
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. \ | |
<b>Please do not upload confidential documents.</b>""") | |
with gr.Row(): | |
with gr.Column(scale=86): | |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>") | |
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents") | |
db_btn = gr.Button("Create vector database") | |
db_progress = gr.Textbox(value="Not initialized", show_label=False) | |
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>") | |
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index") | |
with gr.Accordion("LLM input parameters", open=False): | |
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", interactive=True) | |
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", interactive=True) | |
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k", interactive=True) | |
qachain_btn = gr.Button("Initialize Question Answering Chatbot") | |
llm_progress = gr.Textbox(value="Not initialized", show_label=False) | |
with gr.Column(scale=200): | |
gr.Markdown("<b>Step 2 - Chat with your Document</b>") | |
# Adicionar seletor de idioma | |
language_selector = gr.Radio(["English", "Português"], label="Select Language", value="English") | |
chatbot = gr.Chatbot(height=505) | |
with gr.Accordion("Relevant context from the source document", open=False): | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Page", scale=1) | |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Page", scale=1) | |
msg = gr.Textbox(placeholder="Ask a question", container=True) | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") | |
# Preprocessing events | |
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress]) | |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then( | |
lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False | |
) | |
# Chatbot events com o idioma | |
msg.submit(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) | |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, language_selector], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) | |
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |