DHEIVER commited on
Commit
dfdde84
·
1 Parent(s): 78b24ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -1
app.py CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
  from tensorflow.keras.layers import Layer
 
 
5
 
6
  # Define the custom 'FixedDropout' layer
7
  class FixedDropout(Layer):
@@ -29,7 +31,18 @@ class_labels = ["Normal", "Cataract"]
29
 
30
  # Define a function for prediction
31
  def predict(image):
32
- # Your prediction code here...
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  # Create the Gradio interface
35
  gr.Interface(
 
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
  from tensorflow.keras.layers import Layer
5
+ import numpy as np
6
+ from PIL import Image
7
 
8
  # Define the custom 'FixedDropout' layer
9
  class FixedDropout(Layer):
 
31
 
32
  # Define a function for prediction
33
  def predict(image):
34
+ # Preprocess the input image
35
+ image = image.resize((224, 224)) # Adjust the size as needed
36
+ image = np.array(image) / 255.0 # Normalize pixel values
37
+ image = np.expand_dims(image, axis=0) # Add batch dimension
38
+
39
+ # Make a prediction using the loaded TensorFlow model
40
+ predictions = tf_model.predict(image)
41
+
42
+ # Get the predicted class label
43
+ predicted_label = class_labels[np.argmax(predictions)]
44
+
45
+ return predicted_label
46
 
47
  # Create the Gradio interface
48
  gr.Interface(