Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.models import load_model
|
4 |
-
from
|
5 |
-
import numpy as np
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Class labels for the model
|
12 |
class_labels = ["Normal", "Cataract"]
|
13 |
|
14 |
# Define a function for prediction
|
15 |
def predict(image):
|
16 |
-
#
|
17 |
-
image = image.resize((224, 224)) # Adjust the size as needed
|
18 |
-
image = np.array(image) / 255.0 # Normalize pixel values
|
19 |
-
image = np.expand_dims(image, axis=0) # Add batch dimension
|
20 |
-
|
21 |
-
# Make a prediction using the loaded TensorFlow model
|
22 |
-
predictions = tf_model.predict(image)
|
23 |
-
|
24 |
-
# Get the predicted class label
|
25 |
-
predicted_label = class_labels[np.argmax(predictions)]
|
26 |
-
|
27 |
-
return predicted_label
|
28 |
|
29 |
# Create the Gradio interface
|
30 |
gr.Interface(
|
31 |
fn=predict,
|
32 |
inputs=gr.Image(type="pil"),
|
33 |
-
outputs=gr.Label(num_top_classes=2)
|
34 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.layers import Layer
|
|
|
5 |
|
6 |
+
# Define the custom 'FixedDropout' layer
|
7 |
+
class FixedDropout(Layer):
|
8 |
+
def __init__(self, rate, **kwargs):
|
9 |
+
super(FixedDropout, self).__init__(**kwargs)
|
10 |
+
self.rate = rate
|
11 |
+
|
12 |
+
def call(self, inputs, training=None):
|
13 |
+
if training is None:
|
14 |
+
training = K.learning_phase()
|
15 |
+
|
16 |
+
if training == 1:
|
17 |
+
return K.dropout(inputs, self.rate)
|
18 |
+
return inputs
|
19 |
+
|
20 |
+
# Register the custom layer in a custom object scope
|
21 |
+
custom_objects = {"FixedDropout": FixedDropout}
|
22 |
+
|
23 |
+
# Load the TensorFlow model with the custom object scope
|
24 |
+
tf_model_path = 'modelo_treinado.h5' # Update with the path to your model
|
25 |
+
tf_model = load_model(tf_model_path, custom_objects=custom_objects)
|
26 |
|
27 |
# Class labels for the model
|
28 |
class_labels = ["Normal", "Cataract"]
|
29 |
|
30 |
# Define a function for prediction
|
31 |
def predict(image):
|
32 |
+
# Your prediction code here...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Create the Gradio interface
|
35 |
gr.Interface(
|
36 |
fn=predict,
|
37 |
inputs=gr.Image(type="pil"),
|
38 |
+
outputs=gr.Label(num_top_classes=2)
|
39 |
).launch()
|