Spaces:
Running
on
Zero
Running
on
Zero
# 0. Install custom transformers and imports | |
import os | |
os.system("pip install git+https://github.com/shumingma/transformers.git") | |
os.system("pip install python-docx") | |
import threading | |
import torch | |
import torch._dynamo | |
torch._dynamo.config.suppress_errors = True | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
import gradio as gr | |
import spaces | |
from docx import Document | |
# 1. System prompt | |
SYSTEM_PROMPT = """ | |
You are a friendly café assistant for Café Eleven. Your job is to: | |
1. Greet the customer warmly. | |
2. Help them order food and drinks from our menu. | |
3. Ask the customer for their desired pickup time. | |
4. Confirm the pickup time before ending the conversation. | |
5. Answer questions about ingredients, preparation, etc. | |
6. Handle special requests (allergies, modifications) politely. | |
7. Provide calorie information if asked. | |
Always be polite, helpful, and ensure the customer feels welcomed and cared for! | |
""" | |
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T" | |
# 2. Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
print(f"Model loaded on device: {model.device}") | |
# 3. Load Menu Text from Word document | |
def load_menu_text(docx_path): | |
doc = Document(docx_path) | |
full_text = [] | |
for para in doc.paragraphs: | |
if para.text.strip(): | |
full_text.append(para.text.strip()) | |
return "\n".join(full_text) | |
MENU_TEXT = load_menu_text("menu.docx") | |
print(f"Loaded menu text from Word document.") | |
# 4. Simple retrieval function (search inside MENU_TEXT) | |
def retrieve_context(question, top_k=3): | |
question = question.lower() | |
sentences = MENU_TEXT.split("\n") | |
matches = [s for s in sentences if any(word in s.lower() for word in question.split())] | |
if not matches: | |
return "Sorry, I couldn't find relevant menu information." | |
return "\n\n".join(matches[:top_k]) | |
# 5. Chat respond function | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
context = retrieve_context(message) | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": f"{message}\n\nRelevant menu info:\n{context}"}) | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
# 6. Gradio ChatInterface | |
demo = gr.ChatInterface( | |
fn=respond, | |
title="Café Eleven Assistant", | |
description="Friendly café assistant based on real menu loaded from Word document!", | |
examples=[ | |
[ | |
"What kinds of burgers do you have?", | |
SYSTEM_PROMPT.strip(), | |
512, | |
0.7, | |
0.95, | |
], | |
[ | |
"Do you have gluten-free pastries?", | |
SYSTEM_PROMPT.strip(), | |
512, | |
0.7, | |
0.95, | |
], | |
], | |
additional_inputs=[ | |
gr.Textbox( | |
value=SYSTEM_PROMPT.strip(), | |
label="System message" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
# 7. Launch | |
if __name__ == "__main__": | |
demo.launch(share=True) | |