Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,521 Bytes
53d6350 b36fdc1 83362fe 8ca6b5f 83362fe b36fdc1 83362fe 526f9f1 83362fe 5d4d3e2 83362fe 8ca6b5f 53d6350 5d4d3e2 53d6350 9bd2927 490ca90 5d4d3e2 83362fe 5d4d3e2 cbefa1f 83362fe 5d4d3e2 83362fe 5d4d3e2 8ca6b5f 53d6350 8ca6b5f f8f0b32 8ca6b5f 53d6350 8ca6b5f 83362fe 53d6350 83362fe 53d6350 5d4d3e2 83362fe 5d4d3e2 83362fe 5d4d3e2 83362fe 7a0e378 8ca6b5f 83362fe b36fdc1 8ca6b5f 83362fe 53d6350 83362fe 8ca6b5f 83362fe b36fdc1 8ca6b5f 2f49d9a f8f0b32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# 0. Install custom transformers and imports
import os
os.system("pip install git+https://github.com/shumingma/transformers.git")
os.system("pip install python-docx")
import threading
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
import gradio as gr
import spaces
from docx import Document
# 1. System prompt
SYSTEM_PROMPT = """
You are a friendly café assistant for Café Eleven. Your job is to:
1. Greet the customer warmly.
2. Help them order food and drinks from our menu.
3. Ask the customer for their desired pickup time.
4. Confirm the pickup time before ending the conversation.
5. Answer questions about ingredients, preparation, etc.
6. Handle special requests (allergies, modifications) politely.
7. Provide calorie information if asked.
Always be polite, helpful, and ensure the customer feels welcomed and cared for!
"""
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T"
# 2. Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto"
)
print(f"Model loaded on device: {model.device}")
# 3. Load Menu Text from Word document
def load_menu_text(docx_path):
doc = Document(docx_path)
full_text = []
for para in doc.paragraphs:
if para.text.strip():
full_text.append(para.text.strip())
return "\n".join(full_text)
MENU_TEXT = load_menu_text("menu.docx")
print(f"Loaded menu text from Word document.")
# 4. Simple retrieval function (search inside MENU_TEXT)
def retrieve_context(question, top_k=3):
question = question.lower()
sentences = MENU_TEXT.split("\n")
matches = [s for s in sentences if any(word in s.lower() for word in question.split())]
if not matches:
return "Sorry, I couldn't find relevant menu information."
return "\n\n".join(matches[:top_k])
# 5. Chat respond function
@spaces.GPU
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
context = retrieve_context(message)
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": f"{message}\n\nRelevant menu info:\n{context}"})
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
yield response
# 6. Gradio ChatInterface
demo = gr.ChatInterface(
fn=respond,
title="Café Eleven Assistant",
description="Friendly café assistant based on real menu loaded from Word document!",
examples=[
[
"What kinds of burgers do you have?",
SYSTEM_PROMPT.strip(),
512,
0.7,
0.95,
],
[
"Do you have gluten-free pastries?",
SYSTEM_PROMPT.strip(),
512,
0.7,
0.95,
],
],
additional_inputs=[
gr.Textbox(
value=SYSTEM_PROMPT.strip(),
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
)
# 7. Launch
if __name__ == "__main__":
demo.launch(share=True)
|