Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
-
#
|
2 |
import os
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
import
|
5 |
-
|
6 |
-
from huggingface_hub import login
|
7 |
|
8 |
-
from
|
9 |
-
|
|
|
|
|
10 |
)
|
11 |
-
|
12 |
-
|
13 |
-
from llama_index.embeddings.langchain import LangchainEmbedding
|
14 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
|
|
|
16 |
SYSTEM_PROMPT = """
|
17 |
You are a friendly café assistant for Café Eleven. Your job is to:
|
18 |
1. Greet the customer warmly
|
@@ -24,70 +27,114 @@ You are a friendly café assistant for Café Eleven. Your job is to:
|
|
24 |
Always be polite and helpful!
|
25 |
"""
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
)
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
embed_model = LangchainEmbedding(
|
39 |
-
HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
40 |
)
|
41 |
-
Settings.embed_model = embed_model
|
42 |
-
Settings.chunk_size = 512
|
43 |
-
|
44 |
-
index = VectorStoreIndex.from_documents(docs)
|
45 |
|
46 |
-
|
47 |
-
_state = {"chat_engine": None}
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
system_prompt=SYSTEM_PROMPT,
|
70 |
-
)
|
71 |
-
return _state["chat_engine"]
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
fn=
|
85 |
-
inputs=gr.Textbox(lines=2, placeholder="Ask about menu items, orders, etc..."),
|
86 |
-
outputs="text",
|
87 |
title="Café Eleven Assistant",
|
88 |
-
description="A friendly café
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
-
#
|
92 |
if __name__ == "__main__":
|
93 |
-
|
|
|
1 |
+
# 0. Install custom transformers and imports
|
2 |
import os
|
3 |
+
os.system("pip install git+https://github.com/shumingma/transformers.git")
|
4 |
+
|
5 |
+
import threading
|
6 |
import torch
|
7 |
+
import torch._dynamo
|
8 |
+
torch._dynamo.config.suppress_errors = True
|
|
|
9 |
|
10 |
+
from transformers import (
|
11 |
+
AutoModelForCausalLM,
|
12 |
+
AutoTokenizer,
|
13 |
+
TextIteratorStreamer,
|
14 |
)
|
15 |
+
import gradio as gr
|
16 |
+
import spaces
|
|
|
|
|
17 |
|
18 |
+
# 1. System prompt (your original one)
|
19 |
SYSTEM_PROMPT = """
|
20 |
You are a friendly café assistant for Café Eleven. Your job is to:
|
21 |
1. Greet the customer warmly
|
|
|
27 |
Always be polite and helpful!
|
28 |
"""
|
29 |
|
30 |
+
# 2. Model info
|
31 |
+
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T"
|
|
|
32 |
|
33 |
+
# 3. Load model and tokenizer
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
MODEL_ID,
|
37 |
+
torch_dtype=torch.bfloat16,
|
38 |
+
device_map="auto"
|
|
|
|
|
|
|
39 |
)
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
print(f"Model loaded on device: {model.device}")
|
|
|
42 |
|
43 |
+
# 4. Respond function
|
44 |
+
@spaces.GPU
|
45 |
+
def respond(
|
46 |
+
message: str,
|
47 |
+
history: list[tuple[str, str]],
|
48 |
+
system_message: str,
|
49 |
+
max_tokens: int,
|
50 |
+
temperature: float,
|
51 |
+
top_p: float,
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Generate a chat response using streaming with TextIteratorStreamer.
|
55 |
+
"""
|
56 |
+
messages = [{"role": "system", "content": system_message}]
|
57 |
+
for user_msg, bot_msg in history:
|
58 |
+
if user_msg:
|
59 |
+
messages.append({"role": "user", "content": user_msg})
|
60 |
+
if bot_msg:
|
61 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
62 |
+
messages.append({"role": "user", "content": message})
|
63 |
|
64 |
+
prompt = tokenizer.apply_chat_template(
|
65 |
+
messages, tokenize=False, add_generation_prompt=True
|
66 |
+
)
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
68 |
|
69 |
+
streamer = TextIteratorStreamer(
|
70 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
71 |
+
)
|
72 |
+
generate_kwargs = dict(
|
73 |
+
**inputs,
|
74 |
+
streamer=streamer,
|
75 |
+
max_new_tokens=max_tokens,
|
76 |
+
temperature=temperature,
|
77 |
+
top_p=top_p,
|
78 |
+
do_sample=True,
|
79 |
+
)
|
80 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
81 |
+
thread.start()
|
82 |
|
83 |
+
response = ""
|
84 |
+
for new_text in streamer:
|
85 |
+
response += new_text
|
86 |
+
yield response
|
87 |
|
88 |
+
# 5. Gradio UI
|
89 |
+
demo = gr.ChatInterface(
|
90 |
+
fn=respond,
|
|
|
|
|
91 |
title="Café Eleven Assistant",
|
92 |
+
description="A friendly café chatbot to help you with orders and menu questions!",
|
93 |
+
examples=[
|
94 |
+
[
|
95 |
+
"Can I get a recommendation for breakfast?",
|
96 |
+
SYSTEM_PROMPT.strip(),
|
97 |
+
512,
|
98 |
+
0.7,
|
99 |
+
0.95,
|
100 |
+
],
|
101 |
+
[
|
102 |
+
"Do you have vegan menu options?",
|
103 |
+
SYSTEM_PROMPT.strip(),
|
104 |
+
512,
|
105 |
+
0.7,
|
106 |
+
0.95,
|
107 |
+
],
|
108 |
+
],
|
109 |
+
additional_inputs=[
|
110 |
+
gr.Textbox(
|
111 |
+
value=SYSTEM_PROMPT.strip(),
|
112 |
+
label="System message"
|
113 |
+
),
|
114 |
+
gr.Slider(
|
115 |
+
minimum=1,
|
116 |
+
maximum=2048,
|
117 |
+
value=512,
|
118 |
+
step=1,
|
119 |
+
label="Max new tokens"
|
120 |
+
),
|
121 |
+
gr.Slider(
|
122 |
+
minimum=0.1,
|
123 |
+
maximum=4.0,
|
124 |
+
value=0.7,
|
125 |
+
step=0.1,
|
126 |
+
label="Temperature"
|
127 |
+
),
|
128 |
+
gr.Slider(
|
129 |
+
minimum=0.1,
|
130 |
+
maximum=1.0,
|
131 |
+
value=0.95,
|
132 |
+
step=0.05,
|
133 |
+
label="Top-p (nucleus sampling)"
|
134 |
+
),
|
135 |
+
],
|
136 |
)
|
137 |
|
138 |
+
# 6. Launch
|
139 |
if __name__ == "__main__":
|
140 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|