File size: 14,760 Bytes
c0d93a3 415d65e c0d93a3 415d65e 1832474 415d65e c0d93a3 415d65e c0d93a3 415d65e d03a443 415d65e 0fe7a3f 415d65e c0d93a3 415d65e 3870925 415d65e 3870925 415d65e c0d93a3 415d65e c0d93a3 415d65e 3dc8018 415d65e 6343fb1 415d65e c0d93a3 4073db6 c0d93a3 4073db6 c0d93a3 3a3dc4d 57280b8 3a3dc4d 57280b8 3a3dc4d 57280b8 3a3dc4d c0d93a3 415d65e 3dc8018 c0d93a3 1832474 c0d93a3 1832474 c0d93a3 1832474 c0d93a3 1832474 c0d93a3 415d65e c0d93a3 415d65e c0d93a3 415d65e c0d93a3 415d65e c0d93a3 415d65e c0d93a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pytz
from datetime import datetime, timedelta
import logging
import traceback
from typing import List, Dict, Any
import hashlib
import icalendar
import uuid
import re
import json
import os
# Hugging Face imports
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
TRANSFORMERS_AVAILABLE = True # TODO change back to true to use local llm
except ImportError:
TRANSFORMERS_AVAILABLE = False
# Hugging Face Inference Client
from huggingface_hub import InferenceClient
class EventScraper:
def __init__(self, urls, timezone='Europe/Berlin'):
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
# Timezone setup
self.timezone = pytz.timezone(timezone)
# URLs to scrape
self.urls = urls if isinstance(urls, list) else [urls]
# Event cache to prevent duplicates
self.event_cache = set()
# iCal calendar
self.calendar = icalendar.Calendar()
self.calendar.add('prodid', '-//Event Scraper//example.com//')
self.calendar.add('version', '2.0')
# Model and tokenizer will be loaded on first use
self.model = None
self.tokenizer = None
self.client = None
def setup_llm(self):
"""Setup Hugging Face LLM for event extraction"""
# Try local model first
if TRANSFORMERS_AVAILABLE:
try:
model_name = "meta-llama/Llama-3.2-1B-Instruct" # 3B is very slow on HF :(
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
return_dict_in_generate=False,
device_map='auto'
)
return
except Exception as local_err:
gr.Warning(f"Local model setup failed: {str(local_err)}")
# Fallback to Inference Client
try:
# Try to get Hugging Face token from environment
hf_token = os.getenv('HF_TOKEN')
# Setup Inference Client
if hf_token:
self.client = InferenceClient(
model="meta-llama/Llama-3.2-3B-Instruct",
token=hf_token
)
else:
# Public model access without token
self.client = InferenceClient(
model="meta-llama/Llama-3.2-3B-Instruct"
)
except Exception as e:
gr.Warning(f"Inference Client setup error: {str(e)}")
raise
def generate_with_model(self, prompt):
"""Generate text using either local model or inference client"""
print("------ PROMPT ------------")
print(prompt)
print("------ PROMPT ------------")
if self.model and self.tokenizer:
# Use local model
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=12000,
do_sample=True,
temperature=0.9
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
elif self.client:
# Use Inference Client
return self.client.text_generation(
prompt,
max_new_tokens=2000,
temperature=0.9
)
else:
raise ValueError("No model or client available for text generation")
def fetch_webpage_content(self, url):
"""Fetch webpage content"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
return response.text
except Exception as e:
gr.Warning(f"Error fetching {url}: {str(e)}")
return ""
def extract_text_from_html(self, html_content):
"""Extract readable text from HTML"""
soup = BeautifulSoup(html_content, 'html.parser')
for script in soup(["script", "style", "nav", "header", "footer"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return ' '.join(text.split()[:2000])
def generate_event_extraction_prompt(self, text):
"""Create prompt for LLM to extract event details"""
prompt=f'''
<|start_header_id|>system<|end_header_id|>
<|eot_id|><|start_header_id|>user<|end_header_id|>
You are an event extraction assistant.
Find and extract all events from the following text.
For each event, provide:
- Exact event name
- Date (DD.MM.YYYY)
- Time (HH:MM if available)
- Location
- Short description
Important: Extract ALL possible events.
Text to analyze:
{text}
Output ONLY a JSON list of events like this - Response Format:
[
{{
"name": "Event Name",
"date": "07.12.2024",
"time": "19:00",
"location": "Event Location",
"description": "Event details"
}}
]
If NO events are found, return an empty list [].
Only return the json. nothing else. no comments.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
'''
return prompt
def parse_llm_response(self, response):
"""Parse LLM's text response into structured events"""
try:
# Clean the response and handle nested lists
response = response.strip()
# Try parsing as JSON, handling potential nested structures
def flatten_events(data):
if isinstance(data, list):
flattened = []
for item in data:
if isinstance(item, list):
flattened.extend(flatten_events(item))
elif isinstance(item, dict):
flattened.append(item)
return flattened
return []
try:
# First, attempt direct JSON parsing
events = json.loads(response)
events = flatten_events(events)
except json.JSONDecodeError:
# If direct parsing fails, try extracting JSON
import re
json_match = re.search(r'\[.*\]', response, re.DOTALL | re.MULTILINE)
if json_match:
try:
events = json.loads(json_match.group(0))
events = flatten_events(events)
except json.JSONDecodeError:
events = []
else:
events = []
# Clean and validate events
cleaned_events = []
for event in events:
# Ensure each event has at least a name
if event.get('name'):
# Set default values if missing
event.setdefault('date', '')
event.setdefault('time', '')
event.setdefault('location', '')
event.setdefault('description', '')
cleaned_events.append(event)
return cleaned_events
except Exception as e:
gr.Warning(f"Parsing error: {str(e)}")
return []
def scrape_events(self):
"""Main method to scrape events from all URLs"""
# Ensure LLM is set up
self.setup_llm()
all_events = []
for url in self.urls:
try:
# Fetch webpage
html_content = self.fetch_webpage_content(url)
# Extract readable text
text_content = self.extract_text_from_html(html_content)
# Generate prompt
prompt = self.generate_event_extraction_prompt(text_content)
# Generate response
response = self.generate_with_model(prompt)
print("------ response ------------")
print(response)
print("------ response ------------")
# Parse events
parsed_events = self.parse_llm_response(response)
# Deduplicate and add
for event in parsed_events:
event_hash = hashlib.md5(str(event).encode()).hexdigest()
if event_hash not in self.event_cache:
self.event_cache.add(event_hash)
all_events.append(event)
# Create and add iCal event
try:
ical_event = self.create_ical_event(event)
self.calendar.add_component(ical_event)
except Exception as ical_error:
gr.Warning(f"iCal creation error: {str(ical_error)}")
except Exception as e:
gr.Warning(f"Error processing {url}: {str(e)}")
return all_events
def create_ical_event(self, event):
"""Convert event to iCal format"""
ical_event = icalendar.Event()
# Set unique identifier
ical_event.add('uid', str(uuid.uuid4()))
# Add summary (name)
ical_event.add('summary', event.get('name', 'Unnamed Event'))
# Add description
ical_event.add('description', event.get('description', ''))
# Add location
if event.get('location'):
ical_event.add('location', event['location'])
# Handle date and time
try:
# Parse date
if event.get('date'):
try:
event_date = datetime.strptime(event['date'], '%d.%m.%Y').date()
# Parse time if available
event_time = datetime.strptime(event.get('time', '00:00'), '%H:%M').time() if event.get('time') else datetime.min.time()
# Combine date and time
event_datetime = datetime.combine(event_date, event_time)
# Localize the datetime to the specified timezone
localized_datetime = self.timezone.localize(event_datetime)
# For all-day events, set to start at midnight and end just before midnight the next day
if event_time == datetime.min.time():
start_datetime = localized_datetime.replace(hour=0, minute=0, second=0)
end_datetime = (start_datetime + timedelta(days=1)).replace(hour=23, minute=59, second=59)
# Add properties for all-day event
ical_event.add('dtstart', start_datetime.date())
ical_event.add('dtend', end_datetime.date())
ical_event.add('x-microsoft-cdo-alldayevent', 'TRUE')
else:
# For events with specific time, set 1-hour duration if not specified
end_datetime = localized_datetime + timedelta(hours=1)
# Use TZID format
ical_event['dtstart'] = icalendar.prop.vDDDTypes(localized_datetime)
ical_event['dtstart'].params['TZID'] = 'Europe/Berlin'
ical_event['dtend'] = icalendar.prop.vDDDTypes(end_datetime)
ical_event['dtend'].params['TZID'] = 'Europe/Berlin'
except ValueError as date_err:
gr.Warning(f"Date parsing error: {date_err}")
except Exception as e:
gr.Warning(f"iCal event creation error: {str(e)}")
return ical_event
def get_ical_string(self):
"""Return iCal as a string"""
return self.calendar.to_ical().decode('utf-8')
def scrape_events_with_urls(urls):
"""Wrapper function for Gradio interface"""
# Split URLs by newline or comma
url_list = [url.strip() for url in re.split(r'[\n,]+', urls) if url.strip()]
if not url_list:
gr.Warning("Please provide at least one valid URL.")
return "", ""
try:
# Initialize scraper
scraper = EventScraper(url_list)
# Scrape events
events = scraper.scrape_events()
# Prepare events output
events_str = json.dumps(events, indent=2)
# Get iCal string
ical_string = scraper.get_ical_string()
return events_str, ical_string
except Exception as e:
gr.Warning(f"Error in event scraping: {str(e)}")
return "", ""
# Create Gradio Interface
def create_gradio_app():
with gr.Blocks() as demo:
gr.Markdown("# Event Scraper ๐๏ธ")
gr.Markdown("Scrape events from web pages using an AI-powered event extraction tool.")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
placeholder="https://example.com/events\nhttps://another-site.com/calendar"
)
scrape_btn = gr.Button("Scrape Events", variant="primary")
with gr.Row():
with gr.Column():
events_output = gr.Textbox(label="Extracted Events (JSON)", lines=10)
with gr.Column():
ical_output = gr.Textbox(label="iCal Export", lines=10)
scrape_btn.click(
fn=scrape_events_with_urls,
inputs=url_input,
outputs=[events_output, ical_output]
)
gr.Markdown("**Note:** Requires an internet connection and may take a few minutes to process.")
gr.Markdown("Set HF_TOKEN environment variable for authenticated access.")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_app()
demo.launch() |