Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,18 @@ import icalendar
|
|
11 |
import uuid
|
12 |
import re
|
13 |
import json
|
|
|
14 |
|
15 |
# Hugging Face imports
|
16 |
-
|
17 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
class EventScraper:
|
20 |
def __init__(self, urls, timezone='Europe/Berlin'):
|
@@ -39,25 +47,69 @@ class EventScraper:
|
|
39 |
# Model and tokenizer will be loaded on first use
|
40 |
self.model = None
|
41 |
self.tokenizer = None
|
|
|
42 |
|
43 |
def setup_llm(self):
|
44 |
"""Setup Hugging Face LLM for event extraction"""
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
except Exception as e:
|
58 |
-
gr.Warning(f"
|
59 |
raise
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def fetch_webpage_content(self, url):
|
62 |
"""Fetch webpage content"""
|
63 |
try:
|
@@ -160,17 +212,8 @@ class EventScraper:
|
|
160 |
# Generate prompt
|
161 |
prompt = self.generate_event_extraction_prompt(text_content)
|
162 |
|
163 |
-
#
|
164 |
-
|
165 |
-
outputs = self.model.generate(
|
166 |
-
inputs.input_ids,
|
167 |
-
max_new_tokens=12000,
|
168 |
-
do_sample=True,
|
169 |
-
temperature=0.9
|
170 |
-
)
|
171 |
-
|
172 |
-
# Decode response
|
173 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
174 |
|
175 |
# Parse events
|
176 |
parsed_events = self.parse_llm_response(response)
|
@@ -250,7 +293,7 @@ def scrape_events_with_urls(urls):
|
|
250 |
|
251 |
if not url_list:
|
252 |
gr.Warning("Please provide at least one valid URL.")
|
253 |
-
return
|
254 |
|
255 |
try:
|
256 |
# Initialize scraper
|
@@ -269,7 +312,7 @@ def scrape_events_with_urls(urls):
|
|
269 |
|
270 |
except Exception as e:
|
271 |
gr.Warning(f"Error in event scraping: {str(e)}")
|
272 |
-
return
|
273 |
|
274 |
# Create Gradio Interface
|
275 |
def create_gradio_app():
|
@@ -287,9 +330,9 @@ def create_gradio_app():
|
|
287 |
|
288 |
with gr.Row():
|
289 |
with gr.Column():
|
290 |
-
events_output = gr.Textbox(label="Extracted Events (JSON)" )
|
291 |
with gr.Column():
|
292 |
-
ical_output = gr.Textbox(label="iCal Export")
|
293 |
|
294 |
scrape_btn.click(
|
295 |
fn=scrape_events_with_urls,
|
@@ -298,6 +341,7 @@ def create_gradio_app():
|
|
298 |
)
|
299 |
|
300 |
gr.Markdown("**Note:** Requires an internet connection and may take a few minutes to process.")
|
|
|
301 |
|
302 |
return demo
|
303 |
|
|
|
11 |
import uuid
|
12 |
import re
|
13 |
import json
|
14 |
+
import os
|
15 |
|
16 |
# Hugging Face imports
|
17 |
+
try:
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
+
import torch
|
20 |
+
TRANSFORMERS_AVAILABLE = True
|
21 |
+
except ImportError:
|
22 |
+
TRANSFORMERS_AVAILABLE = False
|
23 |
+
|
24 |
+
# Hugging Face Inference Client
|
25 |
+
from huggingface_hub import InferenceClient
|
26 |
|
27 |
class EventScraper:
|
28 |
def __init__(self, urls, timezone='Europe/Berlin'):
|
|
|
47 |
# Model and tokenizer will be loaded on first use
|
48 |
self.model = None
|
49 |
self.tokenizer = None
|
50 |
+
self.client = None
|
51 |
|
52 |
def setup_llm(self):
|
53 |
"""Setup Hugging Face LLM for event extraction"""
|
54 |
+
# Try local model first
|
55 |
+
if TRANSFORMERS_AVAILABLE:
|
56 |
+
try:
|
57 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
58 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_name,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
return_dict_in_generate=False,
|
63 |
+
device_map='auto'
|
64 |
+
)
|
65 |
+
return
|
66 |
+
except Exception as local_err:
|
67 |
+
gr.Warning(f"Local model setup failed: {str(local_err)}")
|
68 |
+
|
69 |
+
# Fallback to Inference Client
|
70 |
try:
|
71 |
+
# Try to get Hugging Face token from environment
|
72 |
+
hf_token = os.getenv('HF_TOKEN')
|
73 |
+
|
74 |
+
# Setup Inference Client
|
75 |
+
if hf_token:
|
76 |
+
self.client = InferenceClient(
|
77 |
+
model="meta-llama/Llama-3.2-3B-Instruct",
|
78 |
+
token=hf_token
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
# Public model access without token
|
82 |
+
self.client = InferenceClient(
|
83 |
+
model="meta-llama/Llama-3.2-3B-Instruct"
|
84 |
+
)
|
85 |
except Exception as e:
|
86 |
+
gr.Warning(f"Inference Client setup error: {str(e)}")
|
87 |
raise
|
88 |
|
89 |
+
def generate_with_model(self, prompt):
|
90 |
+
"""Generate text using either local model or inference client"""
|
91 |
+
if self.model and self.tokenizer:
|
92 |
+
# Use local model
|
93 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
94 |
+
outputs = self.model.generate(
|
95 |
+
inputs.input_ids,
|
96 |
+
max_new_tokens=12000,
|
97 |
+
do_sample=True,
|
98 |
+
temperature=0.9
|
99 |
+
)
|
100 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
|
102 |
+
elif self.client:
|
103 |
+
# Use Inference Client
|
104 |
+
return self.client.text_generation(
|
105 |
+
prompt,
|
106 |
+
max_new_tokens=12000,
|
107 |
+
temperature=0.9
|
108 |
+
)
|
109 |
+
|
110 |
+
else:
|
111 |
+
raise ValueError("No model or client available for text generation")
|
112 |
+
|
113 |
def fetch_webpage_content(self, url):
|
114 |
"""Fetch webpage content"""
|
115 |
try:
|
|
|
212 |
# Generate prompt
|
213 |
prompt = self.generate_event_extraction_prompt(text_content)
|
214 |
|
215 |
+
# Generate response
|
216 |
+
response = self.generate_with_model(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
# Parse events
|
219 |
parsed_events = self.parse_llm_response(response)
|
|
|
293 |
|
294 |
if not url_list:
|
295 |
gr.Warning("Please provide at least one valid URL.")
|
296 |
+
return "", ""
|
297 |
|
298 |
try:
|
299 |
# Initialize scraper
|
|
|
312 |
|
313 |
except Exception as e:
|
314 |
gr.Warning(f"Error in event scraping: {str(e)}")
|
315 |
+
return "", ""
|
316 |
|
317 |
# Create Gradio Interface
|
318 |
def create_gradio_app():
|
|
|
330 |
|
331 |
with gr.Row():
|
332 |
with gr.Column():
|
333 |
+
events_output = gr.Textbox(label="Extracted Events (JSON)", lines=10)
|
334 |
with gr.Column():
|
335 |
+
ical_output = gr.Textbox(label="iCal Export", lines=10)
|
336 |
|
337 |
scrape_btn.click(
|
338 |
fn=scrape_events_with_urls,
|
|
|
341 |
)
|
342 |
|
343 |
gr.Markdown("**Note:** Requires an internet connection and may take a few minutes to process.")
|
344 |
+
gr.Markdown("Set HF_TOKEN environment variable for authenticated access.")
|
345 |
|
346 |
return demo
|
347 |
|