domtts / docs /install.md
CDOM201's picture
Created app
a7d2bd1
## Install and Use Locally
### Table of Content
- [Linux and macOS Install](#linux-and-macos-install)
- [Docker Install for Windows and macOS](#docker-install)
- [Usage](#usage)
- [Web UI](#webui)
- [CLI](#cli)
- [Python API](#python-api)
### Linux and macOS Install
The repo is developed and tested on `Ubuntu 20.04` and `Python 3.9`.
```bash
git clone https://github.com/myshell-ai/MeloTTS.git
cd MeloTTS
pip install -e .
python -m unidic download
```
If you encountered issues in macOS install, try the [Docker Install](#docker-install)
### Docker Install
To avoid compatibility issues, for Windows users and some macOS users, we suggest to run via Docker. Ensure that [you have Docker installed](https://docs.docker.com/engine/install/).
**Build Docker**
This could take a few minutes.
```bash
git clone https://github.com/myshell-ai/MeloTTS.git
cd MeloTTS
docker build -t melotts .
```
**Run Docker**
```bash
docker run -it -p 8888:8888 melotts
```
If your local machine has GPU, then you can choose to run:
```bash
docker run --gpus all -it -p 8888:8888 melotts
```
Then open [http://localhost:8888](http://localhost:8888) in your browser to use the app.
## Usage
### WebUI
The WebUI supports muliple languages and voices. First, follow the installation steps. Then, simply run:
```bash
melo-ui
# Or: python melo/app.py
```
### CLI
You may use the MeloTTS CLI to interact with MeloTTS. The CLI may be invoked using either `melotts` or `melo`. Here are some examples:
**Read English text:**
```bash
melo "Text to read" output.wav
```
**Specify a language:**
```bash
melo "Text to read" output.wav --language EN
```
**Specify a speaker:**
```bash
melo "Text to read" output.wav --language EN --speaker EN-US
melo "Text to read" output.wav --language EN --speaker EN-AU
```
The available speakers are: `EN-Default`, `EN-US`, `EN-BR`, `EN_INDIA` `EN-AU`.
**Specify a speed:**
```bash
melo "Text to read" output.wav --language EN --speaker EN-US --speed 1.5
melo "Text to read" output.wav --speed 1.5
```
**Use a different language:**
```bash
melo "text-to-speech 领域近年来发展迅速" zh.wav -l ZH
```
**Load from a file:**
```bash
melo file.txt out.wav --file
```
The full API documentation may be found using:
```bash
melo --help
```
### Python API
#### English with Multiple Accents
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
# CPU is sufficient for real-time inference.
# You can set it manually to 'cpu' or 'cuda' or 'cuda:0' or 'mps'
device = 'auto' # Will automatically use GPU if available
# English
text = "Did you ever hear a folk tale about a giant turtle?"
model = TTS(language='EN', device=device)
speaker_ids = model.hps.data.spk2id
# American accent
output_path = 'en-us.wav'
model.tts_to_file(text, speaker_ids['EN-US'], output_path, speed=speed)
# British accent
output_path = 'en-br.wav'
model.tts_to_file(text, speaker_ids['EN-BR'], output_path, speed=speed)
# Indian accent
output_path = 'en-india.wav'
model.tts_to_file(text, speaker_ids['EN_INDIA'], output_path, speed=speed)
# Australian accent
output_path = 'en-au.wav'
model.tts_to_file(text, speaker_ids['EN-AU'], output_path, speed=speed)
# Default accent
output_path = 'en-default.wav'
model.tts_to_file(text, speaker_ids['EN-Default'], output_path, speed=speed)
```
#### Spanish
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
# CPU is sufficient for real-time inference.
# You can also change to cuda:0
device = 'cpu'
text = "El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante."
model = TTS(language='ES', device=device)
speaker_ids = model.hps.data.spk2id
output_path = 'es.wav'
model.tts_to_file(text, speaker_ids['ES'], output_path, speed=speed)
```
#### French
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
device = 'cpu' # or cuda:0
text = "La lueur dorée du soleil caresse les vagues, peignant le ciel d'une palette éblouissante."
model = TTS(language='FR', device=device)
speaker_ids = model.hps.data.spk2id
output_path = 'fr.wav'
model.tts_to_file(text, speaker_ids['FR'], output_path, speed=speed)
```
#### Chinese
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
device = 'cpu' # or cuda:0
text = "我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。"
model = TTS(language='ZH', device=device)
speaker_ids = model.hps.data.spk2id
output_path = 'zh.wav'
model.tts_to_file(text, speaker_ids['ZH'], output_path, speed=speed)
```
#### Japanese
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
device = 'cpu' # or cuda:0
text = "彼は毎朝ジョギングをして体を健康に保っています。"
model = TTS(language='JP', device=device)
speaker_ids = model.hps.data.spk2id
output_path = 'jp.wav'
model.tts_to_file(text, speaker_ids['JP'], output_path, speed=speed)
```
#### Korean
```python
from melo.api import TTS
# Speed is adjustable
speed = 1.0
device = 'cpu' # or cuda:0
text = "안녕하세요! 오늘은 날씨가 정말 좋네요."
model = TTS(language='KR', device=device)
speaker_ids = model.hps.data.spk2id
output_path = 'kr.wav'
model.tts_to_file(text, speaker_ids['KR'], output_path, speed=speed)
```